

CALTECH/MIT
VOTING TECHNOLOGY PROJECT
A multi-disciplinary, collaborative project of
the California Institute of Technology – Pasadena, California 91125 and
the Massachusetts Institute of Technology – Cambridge, Massachusetts 02139

ADVANCES IN CRYPTOGRAPHIC VOTING SYSTEMS

BEN ADIDA
MIT

Key words: voting systems, cryptographic, election administration, secret-
ballot elections

VTP WORKING PAPER #51

September 2006

Advances in Cryptographic Voting Systems

by

Ben Adida

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2006

c© Massachusetts Institute of Technology 2006. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 31st, 2006

Certified by .
Ronald L. Rivest

Viterbi Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Advances in Cryptographic Voting Systems
by

Ben Adida

Submitted to the Department of Electrical Engineering and Computer Science
on August 31st, 2006, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

Democracy depends on the proper administration of popular elections. Voters should receive
assurance that their intent was correctly captured and that all eligible votes were correctly
tallied. The election system as a whole should ensure that voter coercion is unlikely, even
when voters are willing to be influenced. These conflicting requirements present a significant
challenge: how can voters receive enough assurance to trust the election result, but not so
much that they can prove to a potential coercer how they voted?

This dissertation explores cryptographic techniques for implementing verifiable, secret-
ballot elections. We present the power of cryptographic voting, in particular its ability
to successfully achieve both verifiability and ballot secrecy, a combination that cannot be
achieved by other means. We review a large portion of the literature on cryptographic voting.
We propose three novel technical ideas:

1. a simple and inexpensive paper-base cryptographic voting system with some interesting
advantages over existing techniques,

2. a theoretical model of incoercibility for human voters with their inherent limited com-
putational ability, and a new ballot casting system that fits the new definition, and

3. a new theoretical construct for shuffling encrypted votes in full view of public observers.

Thesis Supervisor: Ronald L. Rivest
Title: Viterbi Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

Ron Rivest was already my Master’s Thesis Advisor in 1998-1999.He welcomed me back into
his group after my 4-year leave of absence and found research funding for me by my second
semester. His top-notch advice, endless encouragement, and bottomless well of knowledge
were invaluable. His constant dedication to the field of cryptography, to scientific rigor, and
to teaching, amaze me still every day. My committee members, Shafi Goldwasser and Srini
Devadas, were so encouraging that my defense felt more like a family get-together than an
exam (okay, not quite.)

The Knight Foundation funded my work with the Caltech/MIT Voting Technology Project.
Stephen Ansolabehere helped me get started with the group and provided precious advice
along the way. His unrivaled expertise in election matters was crucial to our debates. His
humor made our meetings seem much shorter than they actually were.

Hal Abelson has been a close mentor for 10 years. His predictions seem outlandish only
because they are, conservatively, 2 years ahead of their time. His dedication and unequaled
talent for teaching will always be among my greatest inspirations. His positive impact on
the world is exceeded only by his humility, and I am honored to have the opportunity to
work with him in any fashion.

Andy Neff, my long-distance collaborator, possesses a strength in the face of absurd adversity
that I have rarely seen. His ideas are groundbreaking and elegant, and I struggle to keep
up. He is maybe the ultimate unspoken hero of voting. If we ever achieve secure verifiable
voting, it is hard to imagine that one of his ideas wouldn’t be part of the solution.

Douglas Wikström, my other long-distance collaborator, smacked me around for incomplete
proofs (I deserved it.) Mike Bond, Jolyon Clulow, and Ross Anderson hacked my ATM card
with a British accent. John Herzog, Paul Youn, Amerson Lin, provided the American (and
Singaporian) counter-part.

Susan Hohenberger and I finally got our anti-phishing paper published, though it was a book
chapter before it was a conference paper (go figure.) She and my other officemates Steve
Weis, Seth Gilbert, and David Liben-Nowell, suffered my incessant yapping about policy,
privacy, copyright reform, and free software.

Chris Peikert reviewed large portions of this work as a last-minute favor, catching bugs I
would surely have missed, and suggesting brilliant improvements. He, along with Rafael Pass,
Alon Rosen, abhi shelat, and Guy Rothblum were always willing to explain the theoretical
crypto concepts I had forgotten, missed, or just not understood.

David Chaum, the man behind a disproportionate number of the major cryptographic break-
throughs of the last 30 years, got me involved in voting standards work and provided endless
entertainment at CRYPTO. Every voting crypto idea seems to have its root in one of David’s
early proposals.

5

Danny Weitzner, Ralph Swick, and Eric Miller were my guides in the wild world of the
W3C. Zak Kohane, Pete Szolovitz, and Ken Mandl were my guides in the land of medical
informatics, bioinformatics, and genomic medicine.

Philip Greenspun helped me return to MIT by offering me a TAship in his course for my
first semester back.

Gerald Ruderman provided unbeatable advice and encouragement.

My parents, Pierre and Yvette, eventually stopped asking questions about the detail of my
work—long past the point I expected—but never stopped encouraging me, congratulating
me on successes big and small, and dismissing my failures as other people’s faults. I could
not have asked for better parents. Claire regaled me with her stories of far-away lands and
adventures, and Juliette found her path to success while helping me plan my wedding from
across the Atlantic. I could not have asked for better sisters.

Speaking of wedding... I met my wife Rita the first week I returned to MIT. The moment I
met her, I knew. The rest, all of this, is details.

6

This work is dedicated to my grandparents, Marguerite, Adolf, Salomon, and Marcelle.
They encouraged me to explore, and I went looking for things to decrypt.

7

8

Contents

1 Introduction 23
1.1 A Brief History of Voting . 24
1.2 What Makes Voting so Hard? . 26

1.2.1 Verifiability vs. Secrecy . 26
1.2.2 Threat Modeling: Planes, Banks, and Voting Machines 27
1.2.3 Auditing a Partially Secret Process 29

1.3 Classic Voting Systems . 29
1.3.1 Chain-of-Custody Security . 30
1.3.2 The Erosion of the Secret Ballot . 30
1.3.3 The Voter-Verified Paper Audit Trail 32

1.4 Cryptographic Voting Schemes . 32
1.4.1 End-to-End Verifiability . 33
1.4.2 A Bulletin Board of Votes . 34
1.4.3 A Secret Voter Receipt . 35
1.4.4 Tallying the Ballots . 36
1.4.5 The Promise of Cryptographic Voting 39

1.5 Contributions of this Work . 39
1.5.1 Mixnet Literature Review . 39
1.5.2 Scratch & Vote . 39
1.5.3 Ballot Casting Assurance &p 2503 4736287 45396786

Assisted-Human Interactive Proofs 40
1.5.4 Public Mixing . 40
1.5.5 Collaboration and Authorship . 41

1.6 Organization . 41

2 Preliminaries 43
2.1 Basics . 43
2.2 Public-Key Encryption . 43

2.2.1 IND-CPA Security . 44
2.2.2 IND-CCA Security . 46
2.2.3 IND-CCA2 Security . 47
2.2.4 IND-RCCA Security . 48

2.3 Homomorphic Public-Key Encryption . 48

9

2.3.1 Re-encryption . 49
2.3.2 Security of Homomorphic Cryptosystems 49
2.3.3 Homomorphic Schemes in Practice 49

2.4 Threshold Public-Key Cryptosystems . 51
2.4.1 Secret Sharing . 52
2.4.2 Secure Multi-Party Computation . 52
2.4.3 Efficient Threshold Schemes . 53

2.5 Zero-Knowledge Proofs . 54
2.5.1 Zero-Knowledge Variants . 55
2.5.2 Proofs of Knowledge . 56

2.6 Program Obfuscation . 56
2.6.1 First Formalization . 57
2.6.2 Auxiliary Inputs . 57
2.6.3 Public-Key Obfuscation . 59

2.7 Universal Composability . 60
2.7.1 Why Another Model? . 61
2.7.2 High-Level Intuition . 61
2.7.3 The Players . 62
2.7.4 Simulation and the Environment Distinguisher 63
2.7.5 Composability and the Hybrid Model 64
2.7.6 An Example of a UC Functionality 64

2.8 Voting Protocols . 65
2.8.1 High-Level Process . 65
2.8.2 The Players & Setup . 66
2.8.3 Casting a Ballot . 66
2.8.4 Anonymizing and Aggregating the Ballots 68
2.8.5 Tallying . 70

3 Verifiable Mixnets: A Review 73
3.1 Introduction . 73
3.2 Notation & Preliminaries . 74

3.2.1 State of Notation . 74
3.2.2 Mixnet Notation . 74
3.2.3 Categorizing Mixnets . 75
3.2.4 The Bulletin Board . 76
3.2.5 Structure of this Work . 77

3.3 Early Mixnets . 78
3.3.1 Chaumian Mixnet . 78
3.3.2 First Reencryption Mixnet . 79

3.4 Universally Verifiable Mixnets . 82
3.4.1 Introduction of Universal Verifiability 82
3.4.2 Fault tolerance . 84
3.4.3 Verification independent of number of mix servers 86

10

3.4.4 Verifying Any Mixnet with RPC . 87
3.5 Efficient Proofs . 88

3.5.1 Mixing with permutation networks 88
3.5.2 Matrix-based proof . 90
3.5.3 Exponent dot-product proof . 91

3.6 Proofs by Aggregate Properties . 93
3.6.1 A Practical Mix . 94
3.6.2 Breaking and Fixing a Practical Mix. 95
3.6.3 Flash Mixing . 95
3.6.4 Optimistic Mixing . 97
3.6.5 Wikström Attacks . 98

3.7 Variants . 100
3.7.1 Hybrid Mixnets . 100
3.7.2 Universal Reencryption . 102
3.7.3 Almost Entirely Correct Mixing . 102
3.7.4 Parallel Mixing . 103

3.8 Universally Composable Mixnets . 103
3.8.1 A First Definition and Implementation 104
3.8.2 Sender-Verifiable Mixnet . 105
3.8.3 Adaptively Secure Mixnet . 108

3.9 Summary . 109
3.10 Conclusion . 109

4 Scratch & Vote 115
4.1 Introduction . 115

4.1.1 Scratch & Vote . 115
4.1.2 Overview of the Ideas . 117
4.1.3 Related Work . 119
4.1.4 Organization . 119

4.2 Preliminaries . 119
4.2.1 Paillier Cryptosystem . 120
4.2.2 Homomorphic Counters . 121
4.2.3 Proofs of Correctness and NIZKs . 122
4.2.4 Paper Ballots . 123

4.3 The Scratch & Vote Method . 125
4.3.1 Election Preparation . 125
4.3.2 Ballot Preparation . 126
4.3.3 Ballot Auditing . 127
4.3.4 Ballot Casting . 128
4.3.5 Tallying . 128
4.3.6 Performance Estimates . 129

4.4 Extensions . 130
4.4.1 Helper Organizations . 130

11

4.4.2 Multiple Races & Many Candidates 130
4.4.3 Reducing the Scratch Surface . 131
4.4.4 Chain Voting and Scratch Surfaces 131
4.4.5 Write-Ins . 131

4.5 Adapting Punchscan . 131
4.6 Threat Model . 133

4.6.1 Attacking the Ballots . 134
4.6.2 Attacking Ballot Secrecy . 135
4.6.3 Attacking the Bulletin Board and the Tally 136

4.7 Conclusion . 137

5 Casting a Verifiable Secret Ballot 139
5.1 Introduction . 139

5.1.1 Verifiability . 140
5.1.2 Interactive Proofs & Receipt Freeness 141
5.1.3 Assisted-Human Interactive Proofs 142
5.1.4 Implementing AHIP Protocols for Ballot Casting 144
5.1.5 Previous & Related Work . 148
5.1.6 Organization . 149

5.2 Auditing an Election . 152
5.3 Ballot Casting Assurance . 154

5.3.1 Setup . 154
5.3.2 Ballot Casting . 156
5.3.3 Complaint & Correction Process . 157
5.3.4 Trust Assumptions . 157
5.3.5 Threats . 159
5.3.6 Other Implementations . 160

5.4 Model and Definitions . 161
5.4.1 Notation . 161
5.4.2 Setup . 161
5.4.3 An Intuition . 161
5.4.4 Formalization . 162
5.4.5 Witness Hiding . 165
5.4.6 A General Construction . 166

5.5 The BitProof Protocol . 167
5.5.1 Bit Encryption . 168
5.5.2 Protocol . 169
5.5.3 Proof of AHIP . 172

5.6 A More Efficient Implementation: BetterBitProof 179
5.6.1 An Intuition . 180
5.6.2 Number Theory of SO(2, q) . 180
5.6.3 Bit Encryption . 183
5.6.4 The BetterBitProof Protocol . 185

12

5.6.5 BetterBitProof is a Private-Input Hiding AHIP 188
5.7 Ensuring Well-Formed Ciphertexts/Ballots 192

5.7.1 The Voting Setting . 192
5.7.2 Forcing Well-Formed Ciphertexts . 193

5.8 Conclusion . 193

6 Public Mixing 195
6.1 Introduction . 195

6.1.1 Contributions . 196
6.1.2 Notation . 197
6.1.3 Overview of Techniques . 197
6.1.4 Sizing the Matrix and Filling in Empty Slots 201

6.2 Preliminaries . 201
6.2.1 Functionalities . 202
6.2.2 Public-Key Obfuscation . 202
6.2.3 Shuffles . 203

6.3 Constructing and Obfuscating a Generic Decryption Shuffle 204
6.3.1 The Obfuscator . 204
6.3.2 Limitations of the Generic Construction 206

6.4 Obfuscating a BGN Decryption Shuffle . 206
6.4.1 The BGN Cryptosystem . 207
6.4.2 The Obfuscator . 208

6.5 Obfuscating a Paillier Re-encryption Shuffle 209
6.5.1 The Paillier Cryptosystem . 209
6.5.2 The Obfuscator . 210

6.6 Proving Correctness of Obfuscation . 213
6.6.1 Overview of the Proof Techniques . 213
6.6.2 Proving a Shuffle of the Columns of a Ciphertext Matrix 214
6.6.3 Proving Double Re-encryption . 219

6.7 Distributed Generation andp 14013 4736287 40248261
Obfuscation of a Shuffle . 221
6.7.1 An Intuitive Overview of the Protocols 221
6.7.2 UC Modeling . 223

6.8 Trivial Mix-Net From Obfuscated Shuffle . 226
6.8.1 Ideal Mixnet Functionality . 226
6.8.2 Other Ideal Functionalities for the Hybrid Construction 227
6.8.3 Realization of Mixnet Functionality 229

6.9 Complexity Estimates . 231
6.10 UC Proof of Mixnet . 233
6.11 Alternate Modeling using Obfuscation . 238
6.12 Conclusion . 240

13

14

List of Figures

1-1 Participants in an election process. Carl wants to coerce Alice into voting Red
instead of her natural choice, Blue. Carl may be an election official. 27

1-2 Chain-of-Custody Voting - every step must be verified. (1) The source code for
voting machines is read and checked. (2) The installation of the voting machine
is verified to ensure that the verified software is indeed installed. (3) The voting
machines are sequestered and sealed prior to the election, and must be secured
against physical attacks (e.g. installation of malicious hardware components). (4)
Election officials ensure that only eligible voters cast a ballot. (5) Ballot boxes are
sealed and collected with care. (6) Tallying occurs in a secured area, ensuring that
no ballots are maliciously lost or injected. 31

1-3 End-to-End Voting - only two checkpoints are required. (1) The receipt obtained
from a voter’s interaction with the voting machine is compared against the bulletin
board and checked by the voter for correctness. (2) Any observer checks that only
eligible voters cast ballots and that all tallying actions displayed on the bulletin
board are valid. 33

1-4 Cryptographic Voting at a High Level - voters cast an encrypted ballot on a
bulletin board, where voter names can be checked by anyone against a public voter
registration database. Then, election officials proceed to anonymize the votes and
jointly decrypt them, providing proofs along the way that any observer can verify.
The results are then posted for all to see. 35

1-5 A secret receipt in the Neff voter verification scheme - The screen
displays a code, which should match the voter’s selected option on the receipt.
In addition, the ticket number should match the voter’s random challenge.
Once the voter leaves the booth with only the receipt, it is impossible for her
to provably claim that she saw 34c7 on the screen, and not dhjq. 37

2-1 Cryptographic Voting Notation: Homomorphic Tallying and Mixnet. 71

3-1 Mixnet Notation. There are l mix servers, and N inputs. 75
3-2 Sako-Kilian Zero-Knowledge Proof of Shuffle. This diagram represents the shuffle

phase of the Sako-Kilian proof, after the partial decryption. 83
3-3 Abe Zero-Knowledge Proof of Shuffle. The secondary shuffle is represented in dotted

lines. Each mix server’s secondary shuffle is dependent on the prior mix server’s
secondary shuffle, rather than the primary shuffle as in the Sako-Kilian proof. . . 112

15

3-4 Abe’s Chained Chaum-Pedersen Proof of Joint Decryption. The typical Chaum-
Pedersen exchanges are passed through all the mix servers. For simplicity
the diagram leaves out the Lagrange interpolation suggested by Abe, and
shows only one (g, y,G, Y) tuple. Abe shows how to process p 5213 4736287
28955261all decryptions with one ri per mix server, effectively performing all
proofs in parallel. 113

3-5 Randomized Partial Checking. Each mix server reveals a random half of its corre-
spondences. Shown in red is a fully revealed path, which can happen if the number
of mix servers is small and the verification selection is completely random. 113

3-6 Randomized Partial Checking with Pairing. Mix servers are sequentially paired.
The ciphertexts “between” both members of each pair are randomly partitioned.
The first mix server reveals the corresponding inputs of its block, while the second
mix server reveals the corresponding outputs of its block. The partition ensures
that no complete path from first input to last output is revealed. 114

3-7 A Sorting Network. Composed of 2-by-2 sorters, this sorting network accomplishes
any permutation with an optimal number of sorters. This is called a Butterfly
Network. 114

4-1 A Scratch & Vote ballot, before and after Alice makes her selection. The
ballot is perforated along two axes: down the vertical midline, and between
the barcode and scratch surface on the right half. 117

4-2 Auditing the S&V ballot. Alice receives two ballots and chooses to audit one
at random, removing its scratch surface. In this diagram, Alice selects the
ballot on the left. Alice’s chosen helper organization then scans the barcode,
reads the randomization data r1, r2, r3, r4 (one value per candidate) previously
hidden under the scratch surface, and confirms that the ballot is correctly
formed. Alice then votes with the second, pristine ballot. 118

4-3 Separating the S&V ballot. Alice separates the left half of her ballot and
places it into the appropriate receptacle which contains other discarded left
halves (Alice could easily take one to claim she voted differently.) 119

4-4 Casting the S&V ballot. The election official verifies that the scratch surface
is intact, then discards it. The remainder of the ballot is cast using a typical
modern scanner (likely more advanced than typical optical scanning voting
machines.) Alice then takes it home as her receipt. 120

4-5 Verifying proper S&V casting. Alice can look up her ballot on the web, using
her name and confirming that the barcode matches (assuming she or her helper
organization has a barcode scanner.) . 121

4-6 A homomorphic counter with 4 slots. Assuming decimal encoding in this
diagram, a vote for Adam is encoded as 1012, a vote for Bob is encoded as
108, a vote for Charlie as 104, and a vote for David as 100 = 1. 121

4-7 The Prêt-a-Voter Ballot: A ballot is a single sheet of paper with a mid-line
perforation. The Voter fills in her choice, then tears the left half off and
destroys it, casting the right half. 123

16

4-8 The Chaum Ballot: A ballot is composed of two super-imposed sheets. Alice,
the voter, marks both sheets simultaneously using a dauber. The two sheets
are separated, one is discarded, and the other is scanned and posted on the
bulletin board. This same half is also the voter’s receipt. 124

4-9 Public Election Parameters and the S&V Ballot. Election parameters are on
the left. The ballot is midline-perforated. The order of the candidate names
is randomized for each ballot. The 2D-barcode on the bottom right corner of
the ballot contains ciphertexts encoding the candidates in the corresponding
order according to the public election parameters. The scratch surface on the
left hides the randomization values r1, r2, r3, r4 used to create the ciphertexts
on the right. The ballot also includes an identifier of the election, which can
simply be a hash of the election public key. 126

4-10 The Punchscan Scratch & Vote variant. The left and middle sheets are su-
perimposed to create the ballot on the right. The bottom sheet contains no
identifying information. The top layer has circular holes big enough to let
the candidate ordering from the bottom sheet show through. The checkmark
locations, represented by small squares, are only on the top layer. Note how
the codes corresponding to the candidates are intuitive, rather than random. 132

4-11 The Punchscan Scratch & Vote ballot separation. Alice separates the top and
bottom sheets, depositing the bottom sheet in the appropriate receptacle. The
top sheet is effectively an encrypted ballot. 133

4-12 Casting a Punchscan Scratch & Vote ballot. An election official verifies that
the scratch surface is intact, then tears it off and discards it in view of all
observers. The remainder is scanned and cast. Alice then takes it home as
her receipt. 134

5-1 (1) Prover P and the Verifier’s interactive component Vint interact in private, with
P generating a secret receipt and Vint producing some internal state. (2) Vcheck, the
non-interactive component of the verifier, checks the receipt against the internal
state produced by Vint. (3) A checks the receipt for internal consistency. 143

5-2 The BitEnc operation, where each boxed bit b indicates Epk (b). Note how chal

indicates which encrypted bits to reveal: a 0-bit indicates that the left half of each
pair should be opened, while a 1-bit indicates that the right half of each pair should
be opened. Note also how String(0) and String(1) are thus constructed from the
selected, thickened boxed bits. 148

5-3 Page #1 of Voter Instructions for the Ballot Casting Assurance / Assisted-
Human Interactive Proof protocols presented here. 150

5-4 Page #2 of Voter Instructions for the Ballot Casting Assurance / Assisted-
Human Interactive Proof protocols presented here. 151

5-5 Auditing an Election—Ballot Casting Assurance describes how Alice can be certain
that her vote was recorded and posted on the bulletin board as she intended, while
Universal Verifiability pertains to the tallying process. 152

17

5-6 The geometric interpretation of the interplay between elements of One, Zero,
and Test. Given ϑk , an element of One, and a test element τc, there is exactly
one element of Zero, ζc−k , such that the corresponding difference vector δk c

is orthogonal to the test vector. 184

6-1 Public Mixing: a permutation π is encoded in matrix form as Λπ, then
element-wise encrypted as Λ̃π. Shuffling is accomplished by homomorphic
matrix multiplication, which is implemented in different ways depending on
the underlying cryptosystem. 199

6-2 Paillier Shuffle: Two layers of encryption, an outer layer shown in orange, and
an inner layer shown in blue, are used to provide mixing. The inputs to be
shuffled are encrypted using the inner layer only. The 0’s of the permutation
matrix are encrypted using the outer layer only. The 1’s of the permutation
matrix are encrypted as double-layer encryptions of 0. The resulting cipher-
texts are also double-layer encryptions of the now-shuffled plaintexts. Not
diagrammed here is the fact that the inner-layer of the input ciphertexts is
reencrypted by the homomorphic matrix multiplication (intuitively, by the
inner-layer encryption of the double-encrypted zeros.) 200

6-3 Proof of Correct Construction for a Single Prover: Starting with the trivial
encryption of the identity matrix, the prover demonstrates knowledge of a
permutation and randomization values in shuffling the columns of the matrix.
This shows that the resulting matrix is indeed a permutation matrix. 213

6-4 Proof of Correct Double-Reencryption. In the n3 Generalized Paillier scheme,
we can perform double reencryption of ciphertexts ã. Because we are proving a
double-discrete logarithm, our only choice is to provide a triangulation proof
with 50% soundness. In the diagram above, the prover performs a second
double-reencryption of ã into α, then, depending on the verifier challenge bit
b, reveals the reencryption exponents for α, or the “difference” in reencryption
exponents between α and ã′. The right-hand side of the figure shows the
double-reencryption of N instances of g, which is the trivial double-encryption
of 0. These double-reencryptions will serve as the diagonal in the identity
matrix, whose columns then get shuffled to generate an encrypted permutation
matrix. 220

6-5 Multiple officials shuffling the columns of the encrypted permutation matrix.
The encrypted matrix effectively captures all of the shuffle actions and is then
ready to “reapply” them by homomorphic matrix multiplication. 222

6-6 Multiple officials sequentially perform double reencryption on a list of values.
Double Reencryption is represented in the top equation. The starting list
of values is composed of trivial encryptions of 0, which is the generator g.
Triangulation proofs like the ones in Figure 6-4 are performed for every such
double reencryption. The final list of values is then used as the diagonal to
form an encrypted identity matrix. 224

18

6-7 The table gives the complexity of the operations in terms of 104 modular κ-
bit exponentiations and in parenthesis the estimated running time in hours
assuming that κ = 1024, κc = κr = 50, and that one exponentiation takes 12
msec to compute (a 1024-bit exponentiation using GMP [85] takes 12 msec
on our 3 GHz PC). We use maximal values of N for each scheme that yield
practical times in a real election setting. 231

19

20

List of Tables

3.1 Summary of Mixnet Protocols. Each mixnet protocol is listed with the prior proto-
cols from which it inherits, the papers that present flaws, the papers that present
fixes, the verifiability and privacy properties. The protocols are ordered chronologi-
cally. The indicated privacy and soundness are indicated as per the p 6598 20129220
40279876originally claimed values, not the result of any potential breaks. We do
not include the hybrid mixnets or universal reencryption in this comparison, as they
are qualitatively different. C&I stands for “Complete and Indepenent,” while C&D
stands for “Complete and Dependent.” . 110

21

22

Chapter 1

Introduction

One of the most important tasks of a democratic government is the planning and execu-
tion of the election that designates its successor. Not surprisingly, it is also one of its most
challenging tasks, one whose requirements and constraints are remarkably strict. Thus, du-
bious results, failing technology, and ingenious methods of fraud have been noted throughout
election history. Lever machine counters have been rigged, ballot boxes have been lost or
magically found, and dead citizens have voted. Legitimate voters have been coerced in
various ingenious ways, including chain voting, spreading false election date and location in-
formation, and instilling false fears regarding the consequences of showing up to vote (arrests,
jury duty, . . .).

In the United States, the 2000 Presidential Election caused much stir: Bush lost the
popular vote but won the Electoral College, including a win in Florida by a margin of 500
votes [67]. Numerous complaints were aired: the “butterfly ballot” in Broward County was
misleading, the punchcard system failed to record a number of votes, and more than 50,000
absentee ballots went missing [10]. This debacle served as a public wake-up call that elections
are far from perfect.

Equipment failures were well known to election officials long before Gore vs. Bush [9].
However, these failures had not previously been implicated in such a close-call election. The
fallout from the drawn-out results-certification process of 2000 caused many States to recon-
sider their voting equipment, often including hastened moves to newer, more computerized
solutions so as to be “not like Florida” [113]. These changes raised questions of their own,
notably among a number of computer scientists who feared that fully computerized vot-
ing would complicate or completely prevent the election verification process [11, 163]. The
controversy and debate are ongoing, with much discussion about what will happen in the
upcoming 2006 mid-term elections.

In this dissertation, we present recent advances in cryptographic voting systems, a type
of election system that provides mathematical proofs of the results—rather than of the
machines. We begin with a review of the functional requirements of voting, the specific
issues that make voting fairly complex, and an overview of the basic technical concepts
behind cryptographic voting. We note with interest that, to this day, there is no known way
to execute a truly secure and verifiable election without some elements of cryptography.

23

1.1 A Brief History of Voting

We begin with a history of election practices and technology, focusing specifically on the
introduction of the secret ballot. Details can be found in the work of Jones [99] and in the
recent book by Saltman [148].

Early Voting. The first accounts of voting are from Ancient Greece, where male landown-
ers voted in “negative elections”: any politician receiving more than 6000 votes was exiled
for ten years. Votes were recorded on broken pieces of porcelain called ostraca [176]. In the
13th century, Medieval Venice introduced approval voting, where each candidate received a
thumbs-up or thumbs-down from each voter, with the winner designated as the candidate
with the highest overall approval rating.

In the United States, the first elections were viva-voce: voters were sworn in and simply
called out their preferences. Multiple clerks recorded the votes separately and in parallel to
prevent error. In the early 1800s, paper ballots were introduced, though these were generally
produced by the voters themselves or by political parties. It is this practice which led to
the “party ticket,” where a voter could easily pick up a pre-printed, all-Republican or all-
Democrat ballot, and cast it as is. To this day, voting systems in the US strive to recreate
the simplicity of “party ticket” voting.

The Secret Ballot. In 1858, Australia introduced a new ballot mechanism: ballots were
to be printed by the state, kept in a safe place until election day, and distributed, one at
a time, to each eligible voter, who then voted in an isolation booth. This method was first
imported to the United States in 1888, following significant concerns of voter fraud. It was
first used widely in the 1892 Presidential elections.

One of the most dramatic changes introduced by the Australian ballot was secrecy. No
longer could voters be influenced by external sources, at least not openly and systematically.
As we will see, it is also this change which radically altered the auditability of elections.

Mechanization of Election Equipment. The standardization of the ballot enabled new
equipment for ballot casting and counting. Lever machines were first introduced in 1892 in
New York and became widespread in medium-to-large voting communities in the mid 1900s.
To this day, they are still used in a number of communities, notably in New York.

A lever machine isolates the user inside a booth with a privacy curtain. Levers are
organized in a grid, where columns generally indicate the political party and rows indicate
the election race. The voter simply turns the levers of her choice. When satisfied, some final
action—pulling a larger lever or opening the privacy curtain—causes the ballot to be cast
and the levers to reset. Mechanical counters keep track of the total count for each candidate.
Consequently, only these aggregates, not individual ballots, are preserved.

In the 1960s, punch card systems were introduced in a few states. A clever design allows
a single small card to offer more than 200 possible voting “positions,” i.e. candidates. By
carefully aligning the questions on flip-cards so that the proper column of the punch card is

24

exposed, a voter can simply punch the hole next to desired candidate and use a single punch
card for an entire election consisting of multiple races. Individual punch cards are then
cast and tabulated centrally using either electro-mechanical readers or a typical computer-
based punchcard reader. Though punch cards preserve individual ballots, the imprecision of
certain hole punches was known to be problematic long before the highly visible exposition
of this weakness during the 2000 elections. In addition, the clever question layout—used to
maximize the number of punch holes on the small punchcard—led directly to the “butterfly”
layout that received much criticism in the 2000 aftermath.

Computerization of Election Equipment. The 1960s also saw the introduction of
optical-scan machines for voting. Using a pencil or a pen, the voter marks up a paper
ballot in the appropriate locations, either by connecting two arrows when choosing a given
candidate or, in more modern systems, filling in the appropriate bubble—much like a stan-
dardized multiple-choice test. An optical scanner is then used to tally the ballots.

Two major types of optical-scan voting systems exist: central-count and precinct-based.
In a central-count optical-scan system, filled-in ballots are collected, unprocessed, at the
precinct, and later delivered to a central location where they are scanned and counted. In
a precinct-based system, voters feed their own ballot into a scanner, which immediately
validates the ballot, either rejecting it if improperly marked, or passing it straight into a
locked ballot box if it is correct.

It has been shown that precinct-based counting prevents a significant fraction of mistakes,
including ballot management (ballot for the wrong precinct) and human error (voting for
two candidates in the same race, i.e. overvoting) [36]. Optical scan machines are used quite
extensively in modern US elections, usually in precinct-based mode, with approximately 30%
market share in the 2000 and 2004 elections, and a predicted 40% share in 2006 [61].

DREs. In recent years, a new type of computerized voting equipment has appeared: the
Direct Recording by Electronics (DRE) machine. These machines are generally personal-
computer-type equipment running special-purpose voting software, often on a generic op-
erating system like Windows. Ideally, the machines are physically hardened, preventing
access to the typical personal-computer connectors, e.g. USB ports. DREs are particularly
interesting because they solve a number of complex operational problems:

• ballots can easily be offered in different languages,

• voters with vision impairment can magnify the screen or use a headset that provides
auditory feedback,

• ballot management is vastly simplified using memory cards instead of paper.

At the same time, these machines have come under significant criticism because they
lack a tamper-proof audit-trail. Voting activists and computer scientists are worried that
these machines could produce erroneous results, either because of bugs or malicious code,

25

that would go undetected [169, 111]. In particular, the worry is that a voter’s choice would
be incorrectly recorded at casting time. Since the only feedback a voter obtains is from the
voting machine itself, a mistake at ballot casting time would be completely unrecoverable
and undetectable.

The VVPAT. To thwart this problem, some have supported the Voter-Verified Paper
Audit Trail, first proposed by Mercuri in 1992 [115]. In VVPAT-based voting machines,
once the voter has finished filling out her ballot using the computer interface, the machine
prints out an audit of the entire ballot on a scrolling receipt visible to the voter behind glass.
The voter then gets to confirm or cancel her vote. The audit trail effectively short-circuits
the machine’s possible mistakes. Ideally, in the case of a recount, the paper trail would be
used instead of the electronic record. VVPAT machines are only just beginning to appear in
the voting equipment market: November 2006 will likely mark the first time they are used
on a significant basis in the United States, with 5 states expected to implement it [98].

1.2 What Makes Voting so Hard?

To illustrate the complexities of voting, it is useful to consider a precise hypothetical scenario
with the following characters:

• Alice and Adrienne, two voters,

• Carl, a coercer who wishes to influence Alice,

• Blue and Red, two options between which voters are deciding in the election.

Alice wants to vote for Blue, while Adrienne wants to vote for Red. Carl wants to coerce
Alice so that she votes for Red instead, thereby swinging the election. It is worth noting
that Carl, the coercer, may be an election official. This setup is illustrated in Figure 1-1.

1.2.1 Verifiability vs. Secrecy

In elections, there is a functional conflict between verifiability and secrecy. On the one hand,
Alice wants to verify that the entire voting process happened correctly, in particular that
her individual vote was counted appropriately as Blue. However, if Alice obtains enough
information from the voting process that she can convince Carl of how she voted, then vote
selling becomes a threat: Carl can offer Alice money in exchange for her voting Red instead
of Blue.

Somehow, we want Alice to obtain enough information to personally verify that her vote
was indeed recorded as Blue, but not so much information that she could convince Carl.
More concretely, if Alice votes Blue and Adrienne votes Red, both should receive assurance
that their vote was cast according to their preference and counted accordingly. In addition,
both can tell Carl equally valid stories about how they allegedly voted Red. Alice is lying,

26

Alice

Blue

Carl

Red

Voting Process

Blue

RedRedRedRed

BlueBlueBlueBlue

Redor

Adrienne

Red

Figure 1-1: Participants in an election process. Carl wants to coerce Alice into voting Red
instead of her natural choice, Blue. Carl may be an election official.

and Adrienne is telling the truth, but Carl cannot tell the difference. Thus, Carl has no
incentive to pay for votes, since he cannot tell if his money is going to “good” use. It is not
immediately clear that resolving this conflict is possible!

1.2.2 Threat Modeling: Planes, Banks, and Voting Machines

A common, recent criticism of voting system failures compares voting to existing complex
systems, like the operation of airplanes or transaction processing by banks [117]. At first
glance, the criticism seems warranted: if we can build large aluminum cylinders, load them
with hundreds of people, project tens of thousands of them every day at half the speed of
sound and at an altitude of 6 miles, land them at their intended destination, all with fewer
than one fatal crash a year, even in the face of malicious adversaries, then surely we can build
reliable voting systems! Similarly, if banks process millions of transactions a day, recording
every dollar in and out of each customer’s bank account, with receipts allowing customers to
audit their account on their own, then surely we can reliably record 100 million votes once
every 4 years and provide adequate auditing!

These analogies make three notable mistakes, the last and most important of which was
noted by renowned security expert Bruce Schneier in 2001 [156]. First, the incentive to throw
a federal election is grossly underestimated. Second, the adversarial model for airplanes and
ATMs are, somewhat surprisingly, less demanding than for a federal election. Third, the
failure detection and recovery process in the case of an airplane or bank failure is generally
well understood: thanks to full auditing, appropriate recovery actions can be taken. In the
case of elections, it isn’t clear that failures can always be detected, and, if they are, recovery

27

is often expensive or even impossible.

Incentive. Influencing the outcome of a federal US election is worth quite a bit of money.
The presidential campaign budget for both parties in 2004 reached $1 billion [34], and there
is, of course, no certainty of winning. A more certain mechanism for influencing the election
outcome might be worth even more, especially considering the influence wielded by a US
president. Though the counter-incentive is significant—voting fraud is a felony—one cannot
ignore this significant incentive to commit fraud in the first place. Even with currently
established stiff penalties and when the gains are relatively small, there is strong empirical
evidence that voting fraud is a regular occurrence [9].

Adversaries. The threat model for safe aviation is well defined: it is assumed that pas-
sengers may be adversaries, which leads to the numerous security checks and the recent
implementation of the Transportation Safety Authority. By contrast, it is generally assumed
that there is significant time and resources available long before the flight to ensure that
pilots are not adversarial. By the time they board the plane, pilots are assumed to be hon-
est. The presence of a co-pilot indicates planning for random failures, though it is hardly
a defense against malicious attacks: significant damage can be inflicted by a rogue pilot,
as some historical cases have suggested [177]. Fortunately, few legitimate pilots are ever
motivated to commit such acts.

In the case of personal banking, the threat model to the individual customer is also well
defined: adversaries are most likely outsiders—identity thieves, ATM bandits, etc. Impor-
tantly, all data is available to honest participants: both bank officers and the customer can
view the transaction trail and account balance. It is also a feature of the system that the
customer can prove her bank balance to a third party, e.g. when applying for a mortgage. 1

By contrast, in an election, any participant, including especially insiders, might want
to throw off the results. Voters might be corrupt. Election officials might be corrupt. No
assumptions of honesty can be made of any participant, and all participants are potentially
highly motivated to perform fraud, since the outcome is a single, extremely important result
for all participants.

Failure Detection and Recovery. In aviation, failures are difficult to miss: planes mal-
function or crash in tragically obvious ways. Extensive records of passenger and crew names,
on-board equipment, and flight data are kept, including the use of “black boxes” to recover
this data in the case of a crash. If a crash does occur, an extensive and expensive investiga-
tion usually ensues, and any technical problems immediately lead to change recommendations
from the National Transportation Safety Board [123].

In banking, the situation is quite similar. There is significant investment and emphasis on
detecting and resolving failures: customers are offered receipts of every transaction, which

1Note that the threat model for the bank is quite different, as the bank must be far more worried about
insider attacks. That said, this is not the threat model against which we’re comparing here: we’re concerned
about the comparison often made between voting system audit trails and personal ATM receipts.

28

they can reconcile against regular account statements. Duplicates of lost records can be
requested and obtained with ease. Video records of ATM transactions are kept. Electronic
records of online activity are maintained. If a banking customer or the bank itself finds a
discrepancy, a review of all audit trails almost always leads to discovery of the malfunction
and rectification of the problem with little overhead.

By contrast, detecting election failure using today’s voting protocols is quite difficult.
It is highly conceivable that successful fraud might go completely undetected, given that a
significant portion of the audit information is voluntarily destroyed to ensure ballot secrecy.
Years after the 2000 and 2004 elections, there isn’t even consensus on whether fraud occurred
[175, 101]. If an error is detected, it is unclear how one might go about resolving the issue:
the only solution may be to re-run the election, which could, in and of itself, vastly change
the election result.

Fixing the Analogies. If voting is compared to banking, then one should imagine a
banking system where the bank cannot know the customer’s balance, and even the customer
cannot prove her balance to her spouse, yet somehow she receives enough assurance that
her money is safe. If voting is compared to aviation, then one must imagine that pilots are
regularly trying to crash the plane, and that we must ensure that they are almost always
unsuccessful, even though, in this imaginary world, plane crashes are particularly difficult to
detect. These significant additional constraints lead to a clearer appreciation of the challenges
faced by voting system designers.

1.2.3 Auditing a Partially Secret Process

Voting is particularly difficult because it requires a public audit of a process which must
ensure a significant amount of secrecy. This secrecy cannot be guaranteed by trusting an
all-powerful third party: even the auditors cannot be made aware of how individual citizens
voted. In addition, this audit must be convincing to mutually distrusting observers.

Such apparently conflicting requirements often call for cryptography. However, before
we explore the solutions offered by cryptographic techniques, let us consider the security
properties of classic voting systems, those in use around the world today.

1.3 Classic Voting Systems

In the conflict between auditability and secrecy, election systems must often favor one or the
other in a compromise. All election systems used in the United States since the introduction
of the secret ballot in 1892 have favored secrecy over auditability. Typically, secrecy is
ensured by forced physical dissociation of identity and ballot, e.g. dropping an anonymized
ballot in a physical ballot box. On the other hand, election auditing generally depends on a
properly enforced chain of custody of election equipment and ballots.

29

1.3.1 Chain-of-Custody Security

Current voting solutions use some type of voting machine to assist voters in preparing and
casting a ballot. The machines are built by private companies, according to various state-
specific standards. Independent testing agencies (ITAs) are called upon to evaluate and
certify the various voting equipment, though their lack of power and limited means has often
been criticized [51]. Election officials generally perform additional tests, usually in the weeks
prior to an election, and, sometimes, in parallel with the election [58], to provide assurance
that the machines are working as expected. On election day, voters cast their ballots via
these machines, and the resulting votes end up in some ballot box, either physical or digital.
Election officials then transport these ballot boxes to a counting facility, where they are
tallied. The aggregate results are finally posted for all to see. This approach presents three
major limitations:

1. Voters must verify by proxy: only election officials can ensure that various testing
procedures are adequate to begin with. Voters receive some indirect indication of test
results, such as the machine testing receipts posted on the wall at the start and end of
election day. However, voters cannot directly verify that the ballot boxes themselves
(digital or physical) are handled appropriately throughout election day.

2. Verification strongly depends on chain-of-custody: election officials must main-
tain a well-audited chain-of-custody to defend against malicious problems. For an
election to run correctly, every transition must be performed correctly, and the chain
of custody of machines and ballots must be strictly respected at all times. A single
failure can open the door to significant corruption of the election results.

3. Recovery is very difficult: the error detection mechanisms are few and coarse-grain,
able only to notice honest mistakes, rarely malicious attacks. If an error is detected,
some voting systems allow for ballots to be recounted. Such a recount can only address
failures in the tallying process, however: recovering from an integrity breach on ballot
boxes or voter intent capture requires that the election be re-run, as it is usually
impossible to tell the legitimate ballots from the fraudulent ones, or properly cast
votes from improperly cast votes.

In other words, in order to implement the secret ballot, current voting systems resort to a
trust-by-proxy, chain-of-custody-based verification mechanism, with a “point-of-no-return”
ballot hand-off, beyond which recovery is limited. This approach is both highly constraining
and prone to significant error. Whether paper, optical-scan, or touch-screen, classic election
methods significantly compromise verifiability in order to achieve ballot secrecy. This chain-
of-custody verification process is diagrammed in Figure 1-2.

1.3.2 The Erosion of the Secret Ballot

As a result, a number of new election proposals have tipped the scales in the other direction:
in order to address the lack of verifiability in current election systems, they propose to

30

Voting
Machine

Vendor

/*
 * source
 * code
 */

if (...

1

2Polling
Location

4

Results

.....

Ballot Box Collection

Voter

3

5 6

Figure 1-2: Chain-of-Custody Voting - every step must be verified. (1) The source code for
voting machines is read and checked. (2) The installation of the voting machine is verified to ensure
that the verified software is indeed installed. (3) The voting machines are sequestered and sealed
prior to the election, and must be secured against physical attacks (e.g. installation of malicious
hardware components). (4) Election officials ensure that only eligible voters cast a ballot. (5)
Ballot boxes are sealed and collected with care. (6) Tallying occurs in a secured area, ensuring that
no ballots are maliciously lost or injected.

compromise ballot secrecy. In some cases, this erosion of ballot secrecy occurs without
anyone noticing. There is, in some election communities, a surprising belief that election
integrity can be achieved even if the system is coercible.

Internet Voting (Switzerland). Switzerland holds multiple referenda per year. In or-
der to improve convenience and increase voter turnout, the Swiss have chosen to introduce
Internet-based voting using any home computer [35]. Unfortunately, internet voting is in-
herently coercible [50], as there is no guaranteed privacy during ballot casting.

Vote By Mail (Oregon and Beyond). Oregon has long offered voting by mail to its
residents, in part due to the large distances voters have to travel to reach a polling location.
Recently, a grassroots effort has emerged to promote the same vote-by-mail approach in other
states [172]. This group strives to make elections more convenient and bypass the complexity
and cost of in-person elections. Most recently, a task force in San Diego suggested a move to
permanent vote-by-mail for all [153]. Unfortunately, much like Internet voting, vote-by-mail
is inherently susceptible to coercion, with detection almost impossible.

Return to Public Voting? Among the voting activism groups, some individuals have
recently proposed explicitly doing away with the secret ballot altogether. They claim that
“auditability and secrecy are incompatible” [112], propose that auditability is more impor-
tant than secrecy, and conclude that we should simply give up ballot secrecy.

31

Unfortunately, though the secret ballot may seem inconsequential, it is, historically, one of
the more important developments in democratic elections. A recent study of Chilean election
data shows that ballot secrecy, introduced for the first time in Chile’s 1958 elections, has “first
order implications” on the election results and subsequent policy decisions [97]. Coercion is
notoriously difficult to detect, and, though not currently rampant, may return in force if the
secret ballot is compromised. We have reached a critical juncture, where the public outcry
for verifiability must be addressed, for fear that the pendulum will swing too far in the other
direction, jeopardizing the secret ballot and thus the ability to honestly gauge voter intent.

1.3.3 The Voter-Verified Paper Audit Trail

As previously described, one proposed solution for verifiability is the Voter-Verified Paper
Audit Trail, abbreviated VVPAT. Though there are some concerns regarding the practicality
of VVPAT machines [166], there is no question that a properly operating VVPAT machine
would significantly simplify the verification chain. VVPAT effectively short-circuits the vot-
ing equipment: voters get the ease-of-use associated with computer voting, while the paper
trail provides a direct mechanism for verification of the voting machine’s output.

However, it is worth noting that even VVPAT does not change the nature of the verifica-
tion process: a chain of custody, albeit a shorter one, must still be maintained and audited,
so that the following questions can be answered:

• Do the accepted paper trails get properly deposited in the ballot box? Do the rejected
paper trails get properly discarded?

• Are the ballot boxes of paper trails appropriately safeguarded during election day?

• Are the ballot boxes of paper trails appropriately collected and safeguarded after the
polls close? What are the safeguards against the introduction of extraneous ballot
boxes?

• Are the paper trails properly tallied? Using what process?

In other words, the VVPAT short-circuits the custody chain prior to ballot casting. The
verification process for everything that follows the ballot hand-off, however, remains a chain
of custody that must be properly enforced at all times.

1.4 Cryptographic Voting Schemes

We now consider cryptographic voting systems at a high level. We pay specific attention to
the end-to-end nature of the verification provided by such systems, and how, consequently,
any observer can verify the proper operation of a cryptographic election completely.

32

Ballot Box /
Bulletin BoardPolling

Location

Voter
Receipt

Results

.....

1 2

Voting
Machine

Vendor

/*
 * source
 * code
 */

if (...

Voting Equipment & Ballot Flow

Verification

Figure 1-3: End-to-End Voting - only two checkpoints are required. (1) The receipt obtained
from a voter’s interaction with the voting machine is compared against the bulletin board and
checked by the voter for correctness. (2) Any observer checks that only eligible voters cast ballots
and that all tallying actions displayed on the bulletin board are valid.

1.4.1 End-to-End Verifiability

When dealing with complex systems, software engineering has long relied on the “end-to-
end” principle [152], where, in order to keep the system simple, the “smarts” of the system
are kept at higher levels of abstraction, rather than buried deep in the stack. For example,
when routing packets on the Internet, very few assumptions are made about the underlying
transport mechanism. Instead, checksums are performed by sender and recipient to ensure
end-to-end integrity in the face of random mistakes, and digital signatures are applied to
thwart malicious modifications of the data. No details of traffic routing need to be verified
in either case; instead, a certain property is preserved from start to finish, regardless of what
happens in between.

Though not all systems are amenable to such a design, voting systems are. Rather than
completely auditing a voting machine’s code and ensuring that the voting machine is truly
running the code in question, end-to-end voting verification checks the voting machine’s
output only. Rather than maintain a strict chain-of-custody record of all ballot boxes, end-
to-end voting checks tally correctness using mathematical proofs. Thus, the physical chain
of custody is replaced by a mathematical proof of end-to-end behavior. Instead of verifying
the voting equipment, end-to-end voting verifies the voting results [147].

As an immediate consequence, one need not be privileged to verify the election. In a
chain-of-custody setting, one has to keep a close eye on the process to be certain of correct

33

execution ; only election officials can do this directly. In an end-to-end verifiable setting,
anyone can check the inputs and outputs against the mathematical proofs. The details of
the internal processes become irrelevant, and verifiability becomes universal, as diagrammed
in Figure 1-3.

Cryptography makes end-to-end voting verification possible. At a high level, crypto-
graphic voting systems effectively bring back the voting systems of yore, when all eligible
citizens voted publicly, with tallying also carried out in public for all to see and audit.
Cryptographic schemes augment this approach with:

1. encryption to provide ballot secrecy, and

2. zero-knowledge proofs to provide public auditing of the tallying process.

1.4.2 A Bulletin Board of Votes

Cryptographic voting protocols revolve around a central, digital bulletin board. As its name
implies, the bulletin board is public and visible to all, via, for example, phone and web
interfaces. All messages posted to the bulletin board are authenticated, and it is assumed
that any data written to the bulletin board cannot be erased or tampered with. In practice,
implementing such a bulletin board is one of the more challenging engineering aspects of
cryptographic voting, as one must worry about availability issues beyond data corruption,
such as denial-of-service attacks for both data publication and access. There are, however,
known solutions to this problem [110].

On this bulletin board, the names or identification numbers of voters are posted in
plaintext, so that anyone can tell who has voted and reconcile this information against the
public registry of eligible voters. Along with each voter’s name, the voter’s ballot is posted in
encrypted form, so that no observer can tell what the voters chose. Two processes surround
the bulletin board. The ballot casting process lets Alice prepare her encrypted vote and cast
it to the bulletin board. The tallying process involves election officials performing various
operations to aggregate the encrypted votes and produce a decrypted tally, with proofs of
correctness of this process also posted to the bulletin board for all observers to see.

Effectively, the bulletin board is the verifiable transfer point from identified to de-
identified ballots. Votes first appear on the bulletin board encrypted and attached to the
voter’s identity. After multiple transformations by election officials, the votes end up on
the bulletin board, decrypted and now unlinked from the original voter identity. Whereas
classic voting schemes perform a complete and blind hand-off—i.e. the ballot is dropped into
a box –, cryptographic voting performs a controlled hand-off, where individual voters can
trace their vote’s entry into the system, and any observer can verify the processing of these
encrypted votes into an aggregate, decrypted tally. This process is illustrated in Figure 1-4.

34

Registration
Database

anonymization

decryption

Results

Encrypted
Votes

Alice

Adrienne

Tally

en
cr

yp
ti

o
n

Verification

Ballot Data Flow

Figure 1-4: Cryptographic Voting at a High Level - voters cast an encrypted ballot on a
bulletin board, where voter names can be checked by anyone against a public voter registration
database. Then, election officials proceed to anonymize the votes and jointly decrypt them, pro-
viding proofs along the way that any observer can verify. The results are then posted for all to
see.

1.4.3 A Secret Voter Receipt

Before Alice’s encrypted ballot appears on the bulletin board, she must prepare it using
some process that gives her personal assurance that her ballot has been correctly encrypted.
Recall that, in providing Alice with this assurance, the system cannot enable her to transfer
this same assurance to Carl, as this would enable Carl to influence her decision. For this
purpose, all current cryptographic voting schemes require that voters physically appear at
a private, controlled polling location: it is the only known way to establish a truly private
interaction that prevents voter coercion.

In many proposed cryptographic schemes, Alice interacts privately with a computerized
voting machine. She makes her selection much as she would using a classic voting machine,
answering each question in turn, verifying her selections on screen, and eventually confirming
her vote. The machine then produces an encryption of Alice’s ballot, and begins a verification
interaction with Alice.

This interaction is a type of zero-knowledge proof, where the machine proves to Alice that
her encrypted vote indeed corresponds to her intended choice, without revealing exactly the
details of this correspondence. In one particularly interesting scheme, Neff’s MarkPledge

35

[29], Alice obtains a printed receipt that includes her encrypted vote and some confirmation
codes. By comparing the codes on the receipt with those on the screen of the machine, Alice
can be certain that the machine properly encoded her vote. In addition, since Alice can
easily claim, at a later point, that a different confirmation code appeared on the screen, she
cannot be coerced. This scheme is diagrammed in Figure 1-5 and explored and extended in
Chapter 5.

Using this encrypted receipt, Alice can verify that her encrypted ballot appears correctly
on the bulletin board. Given that the ballot is encrypted, she can even give a copy of her
receipt to helper political organizations – e.g. the ACLU, the NRA, the various political
parties—so that they may verify, on her behalf, the presence of her encrypted vote on the
bulletin board.

Paper-Based Cryptographic Voting. In 2004, Chaum [40] was the first to propose a
cryptographic scheme that uses paper ballots. The ballot in question is specially formed:
after filling out the ballot, Alice physically splits it into two pre-determined halves, destroys
one, and casts the other while taking a copy of this same half home with her as a receipt.
This separation effectively encrypts Alice’s choice: only election officials with the proper
secret keys can recover Alice’s choice during the tallying process.

In most of these paper-based schemes, the paper ballot must be verified prior to voting
to ensure that the two halves are consistent with one another. Without this verification,
a fraudulently created ballot could corrupt the proper recording of the voter’s intent. In
Chaum’s latest version, Punchscan [66], a second, post-election verification can also verify
the correctness of Alice’s ballot. The details of the Chaum scheme are reviewed in Chapter
4, which also describes Scratch & Vote, our proposed evolution of Chaum’s scheme, with
methods to simplify the ballot face and pre-voting verification stage.

1.4.4 Tallying the Ballots

Once all encrypted votes are posted on the bulletin board, it is time to tally them. Note
that no single election official can decrypt these individual votes: the secret key required
for decryption is shared among a number of election officials, who must collaborate for any
decryption operation. This is extremely important, as any decryption at this point would
violate the ballot secrecy of the voters in question. The decryption process must be well
controlled to protect privacy.

Two major techniques exist for just this purpose. The first uses a special form of
encryption—called homomorphic encryption—that enables the aggregation of votes under
the covers of encryption, so that only the aggregate tally needs decryption. The second
uses a digital version of “shaking the ballot box,” where individual votes are shuffled and
scrambled multiple times by multiple parties, dissociated from the voter identity along the
way, and only then decrypted.

36

Your Receipt

Ticket:
8c5v

Blue: 34c7
Red: dhjq

34c7

Figure 1-5: A secret receipt in the Neff voter verification scheme - The screen displays
a code, which should match the voter’s selected option on the receipt. In addition, the ticket
number should match the voter’s random challenge. Once the voter leaves the booth with
only the receipt, it is impossible for her to provably claim that she saw 34c7 on the screen,
and not dhjq.

Randomized Threshold Public-Key Encryption. Before we present either tallying
method, it is important to note that all cryptographic voting systems use a special kind
of encryption called randomized threshold public-key encryption. The public-key property
ensures that anyone can encrypt using a public key. The threshold-decryption property
ensures that only a quorum of the trustees (more than the “threshold”), each with his own
share of the secret key, can decrypt.

In addition, using randomized encryption, a single plaintext, e.g. Blue, can be encrypted
in many possible ways, depending on the choice of a randomization value selected at encryp-
tion time. Without this property, since most elections offer only a handful of choices, e.g.
Blue or Red, an attacker could simply try to deterministically encrypt all possible choices
to discover, by simple ciphertext comparison, how everyone voted. With the randomization
value, an attacker would have to try all possible random factors. Selecting a cryptosystem
with a large enough set of randomization values ensures that this is never possible.

Tallying under the Covers of Encryption. Using a special form of randomized public-
key encryption called homomorphic public-key encryption, it is possible to combine two
encryptions into a third encryption of a value related to the original two, i.e. the sum. For
example, using only the public key, it is possible to take an encryption of x and an encryption
of y and obtain an encryption of x + y, all without ever learning x or y or x + y.

In a homomorphic voting scheme, as first proposed by Benaloh [43, 19], votes are en-
crypted as either 0 for Blue or 1 for Red. Then, all resulting encrypted votes are homomor-
phically added, one at a time, to yield a single encryption of the number of votes for Red.
The trustees can then decrypt this single encrypted value to discover this tally for Red. The

37

difference between the total number of votes and the Red tally is then the Blue tally. The
approach can be extended to more than two options by encoding multiple “counters” within
a single ciphertext, a technique we review in chapter 2. In addition, a zero-knowledge proof
is typically required for each submitted vote, in order to ensure that each vote is truly the
encryption of 0 or 1, and not, for example, 1000. Otherwise, a malicious voter could easily
throw off the count by a large amount with a single ballot.

Homomorphic voting is particularly interesting because the entire homomorphic opera-
tion is publicly verifiable by any observer, who can simply re-compute it on his own using
only the public key. The trustees need only decrypt a single encrypted tally for each elec-
tion race. Unfortunately, homomorphic voting does not support write-in votes well: the
encrypted homomorphic counters must be assigned to candidates before the election begins.

Shaking the Virtual Ballot Box. A different form of tallying is achievable using a
mixnet, as first described by Chaum [39]. Mixnets typically use a rerandomizable encryp-
tion scheme, which allows anyone to take an encryption of a message and produce a new
encryption of the same message with altered randomness. This is particularly interesting
because, if one were simply to take a set of encryptions and reorder them, it would be trivial
to compare the shuffled encryptions to the pre-shuffling encryptions. As randomized en-
cryptions are effectively unique, the rerandomization property is necessary to perform true,
indistinguishable shuffling.

In a mixnet, a sequence of mix servers, each one usually operated by a different politi-
cal party, takes all encrypted votes on the bulletin board, shuffles and rerandomizes them
according to an order and a set of randomization values kept secret, and posts the result-
ing set of ciphertexts back to the bulletin board. The next mix server then performs a
similar operation, and so on until the last mix server. Then, all trustees cooperate to de-
crypt the individual resulting encryptions, which have, by now, been dissociated from their
corresponding voter identity.

It is reasonable to trust that at least one of the mix servers will “shake the ballot box
well enough” so that privacy is ensured. However, it is not reasonable to trust that no
single mix server will replace an encrypted vote in the mix with a vote of its own. In other
words, we trust the mix servers with the privacy of the vote, but we do not trust them
with its correctness. Thus, each mix server must provide a zero-knowledge proof that it
performed correct mixing, never removing, introducing, or changing the underlying votes.
These types of proof are rather complicated, but a number of efficient schemes are known
and implemented.

Mixnet-based voting is more difficult to operate than homomorphic-based voting, because
the re-encryption and shuffle processes must be executed on a trusted computing base,
keeping the details of the shuffle secret from all others. However, mixnets present two
important advantages: the complete set of ballots is preserved for election auditing, and free-
form ballots, including write-ins, are supported. As a result, mixnet-based voting schemes
offer the most promise in real-world, democratic election implementation, even if they are
operationally more complex.

38

1.4.5 The Promise of Cryptographic Voting

With cryptographic voting promising significantly improved auditability, one might question
why real elections have shunned these techniques to date. In fact, it is only recently that
cryptographic voting schemes have become reasonably usable by average voters. Much nec-
essary research remains to ensure that the extra voter verification processes can be made to
work in a realistic setting. Most importantly, a significant education effort will be required,
because the power of a cryptographically verified election is far from intuitive.

1.5 Contributions of this Work

This dissertation contributes to the teaching, practice, and theory of cryptographic voting.
Each contribution attempts to make cryptographic voting more useful and realistic.

1.5.1 Mixnet Literature Review

One critical component of a large number of cryptographic voting schemes is the anonymous
channel, usually implemented by a robust, universally verifiable mixnet. The literature in
this field spans 25 years without a single literature review. This dissertation (Chapter 3)
presents just such a review of advances in mixnet research over the years, starting with
Chaum’s first mixnet in 1981 through the most recent mixnet work of early 2006.

1.5.2 Scratch & Vote

We propose Scratch & Vote, a paper-based cryptographic voting protocol. Inspired by the
ballots of Chaum and Ryan [40, 41], S&V presents three significant practical advantages:

1. ballots and the ballot casting process use simple technology easily deployable today,

2. tallying is homomorphic, requiring only a single threshold decryption per race, and

3. ballots are self-certifying, which makes auditing and ballot casting assurance more
practical.

Scratch & Vote uses 2D barcode to encode the encrypted votes and a scratch surface
that hides the randomization values used to encrypt these ciphertexts. Thus, a ballot can be
audited by simply removing the scratch surface, without contacting any central authority.
Only ballots that have not been scratched off can actually be used in the vote casting: each
voter takes two ballots, audits one and votes with the other. With a 50% chance of catching
an error with each voter, any moderate attempt at fraud will be caught with just a handful
of voter verifications.

39

1.5.3 Ballot Casting Assurance &
Assisted-Human Interactive Proofs

We have seen that cryptography provides universal verifiability of the tabulation process. In
addition, cryptography gives Alice two important capabilities: she can verify directly that
her vote has been correctly cast, and she can realistically complain if she discovers an error.
One contribution of this dissertation is the exact definition of these properties, and the
coining of the term ballot casting assurance to describe them. In particular, ballot casting
assurance supplants the unfortunately-abused term “cast as intended,” which has been used
with differing meaning by various voting research communities.

We then present Assisted-Human Interactive Proofs (AHIP), a definitional framework
for interactive proofs where the verifier is significantly computationally limited—i.e. human.
In the context of voting, this framework is particularly useful in describing how a voting
machine proves to Alice that her vote was correctly encrypted. In particular, AHIP is the
first definitional framework that captures the notion of a secret voter receipt and the security
properties required of such a receipt.

We provide two implementations of an AHIP proof that a ciphertext encodes a specific
option j out of m possible choices. The first protocol, a tweaked version of Neff’s MarkPledge,
provides ciphertexts whose length depends not only in the security parameter, but also in
the desired soundness. The second protocol provides ciphertexts linear only in the security
parameter, as long as soundness is within the range of the security parameter (it almost
always is). Both schemes are particularly interesting because they are proven secure in this
framework and demand very little from voters: they need only be able to compare very short
strings—e.g. 4 characters.

1.5.4 Public Mixing

This dissertation also introduces Public Mixing, a new type of ballot-preserving anonymous
channel. Typical mixnets await their inputs, then mix in private, then prove their mix.
Public mixes prove their mix, then await their inputs, then mix through entirely public
computation. In other words, all private operations and proofs in a public mix can be
performed before the inputs are available. One should notice that this concept is by no means
intuitively obvious. Public mixing creates, in a sense, the ability to obfuscate the program
that performs the mixing. It is reasonable to think of public mixing as a combination of
the advantages of homomorphic voting and mixnet voting: all election-day operations are
public, yet all ballots are fully preserved.

We provide constructions of public mixing algorithms using the BGN [23] and Paillier
[133] cryptosystems. The former case is simpler to explain but relies on a recently introduced
cryptosystem with younger assumptions. The latter case is a significantly more complicated
construction that relies on a much better understood set of assumptions and a cryptosystem
that is well established in the literature.

Also covered in this work is the efficient distributed generation of a public mixer, because
public mixing isn’t composable. In the voting setting, it is crucial that no single party know

40

the anonymization permutation. Thus, this efficient distributed generation ensures that
multiple authorities collaborate to jointly create a permutation, which no small subset of the
authorities can recover on its own.

1.5.5 Collaboration and Authorship

The mixnet review itself is the work of the author, though, of course, the individual schemes
reviewed are the works of their respective authors. Scratch & Vote is joint work between
the author and Ronald L. Rivest. Assisted-Human Interactive Proofs and Ballot Casting
Assurance are joint work between the author and C. Andrew Neff. Public Mixing is joint
work between the author and Douglas Wikström.

1.6 Organization

Chapter 2 reviews a number of cryptographic concepts important to voting protocols, in-
cluding public-key cryptography, homomorphic cryptosystems, and threshold cryptosystems.
Chapter 3 reviews the mixnet literature. Chapter 5 defines the concept of ballot casting as-
surance, and the Assisted-Human Interactive Proof model and implementations. Chapter 6
describes public mixing.

41

42

Chapter 2

Preliminaries

Protocols for democratic elections rely on numerous cryptographic building blocks. In this
chapter, we review the concepts and notation of these building blocks. We begin with a review
of public-key cryptography, its security definitions, and the principal algorithms that we use
in practical protocols. We review homomorphic cryptosystems, the interesting properties
they yield, and the security consequences of these properties. Then, we consider threshold
cryptosystems, where the process of key generation and decryption can be distributed among
trustees, a task of great importance to voting systems. We also review zero-knowledge proofs,
another critical component of universally verifiable voting, and we briefly review program
obfuscation, which is of particular importance to the contributions of this dissertation. We
also cover universal composability, a framework for proving protocols secure that has become
quite useful in the recent voting literature.

The last section of this chapter reviews prior work in universally verifiable cryptographic
voting, including mixnet-based systems and homomorphic aggregation. It defines notation
that cuts across the various schemes. It is this notation which we will use in the rest of this
work.

2.1 Basics

We denote by κ the main security parameter and say that a function ε(·) is negligible if for
every constant c there exists a constant κ0 such that ε(κ) < κ−c for κ > κ0. We denote by PT,
PPT , and PT∗, the set of uniform polynomial time, probabilistic uniform polynomial time,

and non-uniform polynomial time Turing machines respectively. We use the notation
R←− to

denote either a uniform random sampling from a set or distribution, or the assignment from
a randomized process, i.e. a PPT algorithm, with uniform choice of randomization values.

2.2 Public-Key Encryption

Public-key encryption was first suggested by Diffie and Helman [56] in 1976, and first im-
plemented by Rivest, Shamir, and Adleman [145] in 1977. At its core, it is a simple, though

43

somewhat counter-intuitive, idea: anyone can encrypt a message destined for Alice, but only
Alice can decrypt it. More precisely, Alice can generate a keypair composed of a public
key pk and a secret key sk . She then distributes pk widely, but keeps sk to herself. Using
pk , Bob can encrypt a plaintext m into a ciphertext c. The ciphertext c is then effectively
“destined” for Alice, since only Alice possesses sk , with which she can decrypt c back into
m.

More formally, we can define a public-key cryptosystem as follows.

Definition 2-1 (Public-Key Cryptosystem) A public-key cryptosystem PKCS is a set of
three PPT algorithms G, E ,D, such that, given security parameter κ, the following operations
are defined:

• Keypair Generation: matching public and secret keys can be generated by anyone
using the public algorithm G.

(pk , sk)
R←− G(1κ)

• Encryption: a plaintext m in the message space Mpk can be encrypted using the
public key pk and the encryption algorithm E. This process is usually randomized,
using randomization value r ∈ Rpk

c = Epk(m; r)

We denote Cpk the space of ciphertexts c.

• Decryption: a ciphertext c in the ciphertext space Cpk can be decrypted using the
secret key sk and the decryption algorithm D. This process is always deterministic: a
given ciphertext always decrypts to the same plaintext under a given secret key.

m = Dsk(c)

Given such a cryptosystem, one can consider different security definitions.

2.2.1 IND-CPA Security

Intuitively, a cryptosystem is said to be semantically secure if, given a ciphertext c, an
adversary cannot determine any property of the underlying plaintext m. In other words, an
adversary cannot extract any semantic information of plaintext m from an encryption of m.
Semantic security was first defined in 1982 by Goldwasser and Micali [80], who also showed
that semantic security is equivalent to ciphertext indistinguishability with chosen plaintexts
[81]. This latter definition, known as GM Security or IND-CPA , is a more natural one, so
we state it here.

44

In this definition, given a public key pk , the adversary chooses two plaintexts m0 and
m1 and is then presented with c, a ciphertext of one of these plaintexts, chosen at random.
If the adversary cannot guess which of the two plaintexts was chosen for encryption with
noticeably better than 50% chance (i.e. picking one at random), then the scheme is said to
be secure against chosen plaintext attack.

Definition 2-2 (IND-CPA Security) A public-key cryptosystem PKCS = (G, E ,D) is said
to be IND-CPA-secure if there exists a negligible function ν(·) such that, for all Adv ∈ PT∗:

Pr
[
(pk , sk)

R←− G(1κ); (m0, m1, state) ← Adv(choose, pk) ;

b
R←− {0, 1}; c R←− Epk(mb); b

′ ← Adv(guess, c, state) :

b = b′
]

<
1

2
+ ν(κ)

We know of a number of efficient schemes that are IND-CPA-secure.

RSA with OAEP Padding. In so-called “raw RSA” [145], two safe primes p and q are
selected, pk = (n, e) where n = pq and e � | φ(n), and sk = d where ed = 1 mod φ(n).
Encryption is then performed as c = me mod n, and decryption as m = cd mod n. Clearly,
since the encryption operation is deterministic given m and pk , raw RSA is not IND-CPA-
secure: an adversary can just encrypt m0 and m1 and compare them against the challenge
ciphertext.

RSA can be made IND-CPA-secure using message padding such as OAEP [16]. Instead
of encrypting the raw message m, RSA-OAEP encrypts m||OAEP(m), where OAEP(m)
includes randomness.

El Gamal. El Gamal [71] is the prime example of an IND-CPA-secure cryptosystem. Con-
sider g the generator of a q-order subgroup of Z∗

p, where p is prime and q is a large prime
factor of p − 1. Key generation involves selecting a random x ∈ Z∗

q, at which point sk = x
and pk = y = gx mod p. Encryption is then given as

c = (α, β) = (gr, m · yr), r
R←− Z∗

q.

Decryption is performed as

m =
β

αx

Paillier. Paillier [133] is another good example of an IND-CPA-secure cryptosystem. Con-
sider n = pq as in the RSA setting. Consider λ = lcm(p − 1, q − 1). Consider the function
L(x) = (x−1)/n. Consider a generator g of Z∗

n2 specially formed such that g = 1 mod n. The

45

public key is then simply n, while the private key is λ. Encryption of m ∈ Zn is performed
as c = gmrn mod n2 for a random r ∈ Z∗

n. Decryption is performed as

m =
L(cλ mod n2)

L(gλ mod n2)
mod n

We provide here a brief explanation of the Paillier cryptosystem, given that it is partic-
ularly interesting and useful for our work in this dissertation. Recall that:

• φ(n) = (p − 1)(q − 1) is Euler’s totient function.

• λ = lcm(p − 1, q − 1) is the output of Carmichael’s function on n.

• The order of Z∗
n2 is nφ(n).

• For any a ∈ Z∗
n2 :

– aλ = 1 mod n

– aλn = 1 mod n2

Thus, consider the decryption function defined above, in particular the denominator. Recall
that g = 1 mod n, which we can also write g = nα + 1 for some integer α.

L(gλ mod n2) =
((1 + nα)λ mod n2) − 1

n

=
(nαλ) mod n2

n
= αλ mod n2

Note that the exponentiation above reduces to the multiplication because all other monomials
in the expansion are multiples of n2. One can then easily see that, because rn will cancel
out by exponentiation to λ:

L(cλ mod n2) = mαλ mod n2

and thus that the decryption works as specified.

2.2.2 IND-CCA Security

Indistinguishability with respect to adversarially-chosen plaintexts is not enough for all ap-
plications. Intuitively, one should also consider the possibility that the adversary can obtain
the decryption of a few chosen ciphertexts before receiving the challenge ciphertext. This no-
tion of security is called IND-CCA-security, informally known as “security against lunchtime
attacks.” The model is that the adversary might have access to a decryption box while the
owner is “out to lunch” (possibly metaphorically.) Later, the adversary will try to use the
information gained over lunch to decrypt other ciphertexts.

46

Definition 2-3 (IND-CCA Security) A public-key cryptosystem PKCS = (G, E ,D) is said
to be IND-CCA-secure if there exists a negligible function ν(·) such that, for all Adv ∈ PT∗,
given a decryption oracle ODec(·):

Pr
[
(pk , sk)

R←− G(1κ); (m0, m1, state) ← AdvODecsk (·)(choose, pk) ;

b
R←− {0, 1}; c R←− Epk(mb); b

′ ← Adv(guess, c, state) :

b = b′
]

<
1

2
+ ν(κ)

As it turns out, the notion of IND-CCA security is not as interesting as its more powerful
variant, IND-CCA2 security.

2.2.3 IND-CCA2 Security

The IND-CCA2 security definition gives the lunchtime attacker even more power: after the
challenge ciphertext has been issued, the attacker gets further access to the decryption oracle
ODec(·), which the attacker can query for anything, except of course the challenge ciphertext
itself. Informally, this implies that an attacker is unable to extract any information about
a ciphertext, even if he’s able to request the decryption of any other ciphertext, even ones
derived from the challenge ciphertext.

Definition 2-4 (IND-CCA2 Security) A public-key cryptosystem PKCS = (G, E ,D) is
said to be IND-CCA2-secure if there exists a negligible function ν(·) such that, for all Adv ∈
PT∗, given a decryption oracle ODec(·):

Pr
[
(pk , sk)

R←− G(1κ); (m0, m1) ← AdvODecsk (·)(choose, pk) ;

b
R←− {0, 1}; c R←− Epk(mb); b

′ ← AdvODecsk,c(·)(guess, c) :

b = b′
]

<
1

2
+ ν(k)

where ODecsk ,c(·) is a decryption oracle which answers all queries by decrypting the requested
ciphertext, except for the challenge ciphertext c where it answers with NULL.

IND-CCA2 security is considered the “gold standard” of public-key cryptosystems (though,
in some cases, the alternate standard of plaintext-awareness [89] is also considered.) Effec-
tively, the only known way to obtain a fresh ciphertext for a given message is to encrypt the
plaintext yourself.

47

2.2.4 IND-RCCA Security

As it turns out, IND-CCA2 security may be overkill for a number of applications. In partic-
ular, given a ciphertext c, it might be acceptable to let anyone create a new ciphertext c′

such that Dsk(c) = Dsk(c
′). Notably, someone without the secret sk would still be unable to

generate a ciphertext whose plaintext is related to that of c in some way other than equality.
Thus, there is a middle ground between IND-CPA and IND-CCA security: IND-RCCA

security [142], which specifically allows an adversary to generate a “fresh” ciphertext c′ from
an existing ciphertext c, such that Dsk(c) = Dsk(c

′). More formally:

Definition 2-5 (IND-RCCA Security) A public-key cryptosystem PKCS = (G, E ,D) is
said to be IND-RCCA-secure if there exists a negligible function ν(·) such that, for all Adv ∈
PT∗, given a decryption oracle ODec(·):

Pr
[
(pk , sk)

R←− G(1κ); (m0, m1) ← AdvODecsk (·)(choose, pk) ;

b
R←− {0, 1}; c R←− Epk(mb); b

′ ← AdvODecsk,m0,m1
(·)(guess, c) :

b = b′
]

<
1

2
+ ν(κ)

where ODecsk ,m0,m1 is a decryption oracle which answers all queries by decrypting the re-
quested ciphertext, except for ciphertexts which decrypt to either m0 or m1.

2.3 Homomorphic Public-Key Encryption

Homomorphic public-key cryptosystems exhibit a particularly interesting algebraic property:
when two ciphertexts are combined in a specific, publicly-computable fashion, the resulting
ciphertext encodes the combination of the underlying plaintexts under a specific group op-
eration, usually multiplication or addition.

Definition 2-6 (Homomorphic Cryptosystem) A public-key cryptosystem PKCS = (G, E ,D)
is said to be homomorphic for binary relations (⊕,⊗) if:

• ∀(pk , sk)
R←− G(1κ), given message domain Mpk , (Mpk ,⊕) forms a group.

• ∀(pk , sk)
R←− G(1κ), given ciphertext range Cpk , (Cpk ,⊗) forms a group.

• ∀(pk , sk)
R←− G(1κ),∀(c1, c2) ∈ C2

PKCS,pk ,

Dsk(c1 ⊗ c2) = Dsk(c1) ⊕Dsk(c2).

48

2.3.1 Re-encryption

An immediate consequence of a cryptosystem’s homomorphic property is its ability to per-
form reencryption: given a ciphertext c, anyone can create a different ciphertext c′ that en-
codes the same plaintext as c. Recall that PKCS is homomorphic for (⊕,⊗) if (Mpk ,⊕) forms
a group, which means there exists an identity plaintext m0 such that, ∀m ∈ Mpk , m⊕m0 = m.
Thus, given a homomorphic cryptosystem PKCS, we can define the reencryption algorithm
as follows:

REpk(c; r) = c ⊗ Epk(m0; r)

If Dsk(c) = m, then Dsk(REpk(c)) = m, too.

2.3.2 Security of Homomorphic Cryptosystems

The malleability of ciphertexts in homomorphic cryptosystems limits the security of such
schemes. In particular, the ability to reencrypt immediately indicates that the system is not
IND-CCA2-secure, and can be at best IND-RCCA-secure. Even more significant, the ability
to create a ciphertext of a related but different plaintext breaks even IND-RCCA security.
Specifically, an adversary can take the challenge ciphertext c, create c′ = c⊗Epk(m̃) for some
m̃ known to the adversary, query ODec with c′ to obtain m′, and compute m = m′ ⊕ m̃−1.

It is not well understood whether homomorphic schemes can be IND-CCA-secure: can
ODec help an adversary succeed if it can only be used prior to the challenge ciphertext?
Thus, we know that homomorphic cryptosystems can be IND-CPA-secure, but we do not
know whether they can be IND-CCA-secure.

2.3.3 Homomorphic Schemes in Practice

A number of practical schemes are homomorphic.

RSA. In raw RSA, encryption is performed as c = me mod n. Thus, clearly, c0 × c1 =
(m0 × m1)

e mod n. Raw RSA is thus homomorphic on operations (×,×). That said, raw
RSA isn’t even IND-CPA-secure, which means it isn’t very useful in many applications. RSA-
OAEP, on the other hand, is quite useful, but loses the homomorphic property due to the
non-malleable OAEP padding.

El Gamal. In El Gamal, encryption is performed as c = (gr, m · yr). Thus, if we define ⊗
as the element-wise product of ciphertext pairs, then El Gamal is homomorphic for (×,⊗):

(gr1 , m1 · yr1) ⊗ (gr2 , m2 · yr2) = (gr1+r2 , (m1m2) · yr1+r2).

El Gamal is particularly interesting: it exhibits a homomorphism and is IND-CPA-secure.

49

Exponential El Gamal. If El Gamal is homomorphic for multiplication with a plaintext
in the base, then one is immediately tempted to adapt El Gamal to use a plaintext in the
exponent in order to exhibit a homomorphic addition. In fact, this can be done, but at a
large cost: decryption requires performing a discrete log, which inherently limits the plaintext
domain M to polynomial size. Exponential El Gamal is defined as :

• Key Generation: same as El Gamal, select a prime p such that another large prime
q divides (p− 1). Select g, a generator of a q-order subgroup of Z∗

p. Mpk = Zq. sk = x,
where x is randomly selected in Z∗

q. pk = y = gx mod p.

• Encryption: similar to El Gamal, except the plaintext is now in the exponent.

Epk(m; r) = (α, β) = (gr, gmyr) mod p.

• Decryption: similar to El Gamal, except a discrete logarithm is now required in
addition to the usual computation.

Dsk(α, β) = logg

[
β

αx

]
mod p.

• Homomorphic Addition: exactly the same as El Gamal’s homomorphic multiplica-
tion, using a ciphertext operation which performs element-wise multiplication on the
ciphertext pairs:

Epk(m1; r1) ⊗ Epk(m2; r2) = (gr1 , gm1yr1) ⊗ (gr2 , gm2yr2)

= (gr1+r2 , gm1+m2yr1+r2)

= Epk(m1 + m2; r1 + r2).

In practice, the decryption limits the message domain, e.g. a few trillion possible messages
at the most. Decryption is usually performed by various discrete-logarithm algorithms, for
example the baby-step giant-step algorithm [160], which requires O(

√
m) time.

Paillier. In Paillier, encryption is performed as c = gmrn mod n2. Clearly, this scheme is
homomorphic for (+,×) over the plaintext space Zn:

Epk(m1; r1) × Epk(m2; r2) = (gm1rn
1) × (gm2rn

2)

= gm1+m2(r1r2)
n

= Epk(m1 + m2; r1r2).

50

Note that Paillier decryption is efficient, which means the plaintext domain can be super-
polynomial while retaining the additive homomorphism.

Generalized Paillier. Damg̊ard et al. [48] generalize the Paillier scheme, so that a public
key with modulus n can encrypt plaintexts in Zns into ciphertexts in Zns+1 . Computations
modulo n2 are replaced by computations modulo ns+1. For this generalized version, we write

Epai
n,s(m) = gmrns

mod ns+1

and we use Mns and Cns to denote the corresponding message space Zns and ciphertext space
Z∗

n(s+1) . Damg̊ard et al. prove that the security of the generalized scheme follows from the
security of the original scheme. The properties of this extended Paillier cryptosystem can
be seen as parallel to those of the typical Paillier cryptosystem:

• the order of the group Zn(s+1) is φ(n)ns.

• the order of (n+1) is ns in Zn(s+1) , thus we will use g = n+1 as the base for encryption:
its exponent is perfectly sized for plaintexts in Zns .

• If we denote s = r(ns), effectively the randomization value, then: sφ(n) = 1 mod n(s+1)

and sλ = 1 mod n(s+1). Thus, when computing cλ during decryption, the randomiza-
tion value cancels out, and we get:

cλ = gmλ mod n(s+1)

Generalized Paillier provides two interesting high-level properties:

1. longer plaintexts with better efficiency : using the same public key, n, plaintexts longer
than |n| can be encrypted, while the ciphertext overhead remains |n|.

2. layered encryption: plaintexts can be encrypted multiple times under the same public
key, each time adding an overhead of |n| bits. This is interesting in that the group
orders maintains all homomorphic properties intact at every layer. Note that this
property has not been noticed before, and is described for the first time in Chapter 6.

2.4 Threshold Public-Key Cryptosystems

In many applications, including notably voting, it is desirable to allow decryption only when
a quorum of “trustees” agree. In other words, the secret key sk isn’t available to a single
party. Instead, l trustees share sk : trustee i has share sk (i). If at least k of the l trustees
participate, then decryption is enabled. If fewer than k trustees participate, then the security
properties of the cryptosystem are fully preserved.

51

There are two conceivable approaches to generating the shares {sk (i)}. The simpler
approach is for a “dealer” to generate (pk , sk) normally, split sk into shares, then distribute
these shares to the appropriate trustees. A more secure approach is to have the trustees
generate the keypair together, with no single party ever learning the complete sk in the
process.

2.4.1 Secret Sharing

Critical to the implementation of threshold cryptography is the concept of secret sharing,
first introduced by Shamir in 1979 [159]. In this scheme, a secret s in a finite field is shared
as s(1), s(2), . . . , s(l), where any k-sized subset of these n shares reveals s (k ≤ l), but any
subset of size smaller than k reveals nothing about s. Shamir’s implementation produces a
polynomial P (x) of degree k − 1 over the finite field in question, such that P (0) = s, and
each share s(i) is a point (x, y) such that y = P (x) (and x �= 0, of course). Using Lagrange
coefficients for polynomial interpolation, k points are sufficient to recover the polynomial P ,
and thus s = P (0). Fewer than k points, however, will hide s information-theoretically.

Recall that this interpolation process defines Lagrange interpolation polynomials for each
point. Given {(xi), (yi)}i∈[1,k] the k points we wish to interpolate, we denote λi(x) the
interpolation polynomial that corresponds to point i:

λi(x) =
k∏

j=1,j �=i

(x − xj)

(xi − xj)

The interpolated polynomial is then:

P (x) =
k∑

i=1

λi(x)yi

Since we seek only P (0), the secret, we can skip the computation of the actual polynomial
coefficients, and go straight to:

s = P (0) =
k∑

i=1

yi

(
k∏

j=1,j �=i

−xj

(xi − xj)

)

Note that each share is the pair (x, y). Thus, it is permissible for all xi to be public,
with the corresponding yi remaining secret. This allows anyone to compute the Lagrange
coefficients, ready to be combined with the actual yi values at the appropriate time.

2.4.2 Secure Multi-Party Computation

In 1986, Yao [182] showed that any multi-party computation can be performed using a
garbled representation of the circuit that implements the computation. Yao’s technique in-
volves a gate-by-gate, bit-by-bit decomposition of the computation. Thus, though incredibly

52

powerful as a generic method, it it is quite inefficient in practice.
Clearly, threshold cryptosystems can be implemented using a simple Shamir secret shar-

ing scheme and two garbled circuits: one that generates, splits, and distributes the keypair
(pk , sk) to all trustees, and one that combines the shares to perform actual decryption. In
practice, however, it is best to find a cryptosystem that explicitly supports some efficient
mechanism for threshold operations.

2.4.3 Efficient Threshold Schemes

El Gamal. The algebraic structure of the El Gamal cryptosystem makes it particularly
useful for threshold operations, as first described in this setting by Desmedt and Frankel [53].
Consider sharing the secret key x into shares x1, x2, . . . , xl, using Shamir k-out-of-l secret
sharing. Each share xi is associated with a public-key share, yi = gxi . Note that x and y
here should not be confused with the coordinates of the points in the Shamir secret-sharing
scheme: they are the private and public key, respectively.

Decryption in this setting then becomes:

m =
β∏

αxiλi(0)

where αxi can be computed by each trustee independently.
Most importantly, it is then possible to achieve distributed generation of a key, where no

single party, not even a setup “dealer”, learns the complete secret key, as shown by Pedersen
[135]. The protocol functions as follows, at a high level:

1. each trustee generates secret share xi ∈ Z∗
q, and publishes yi = gxi .

2. each trustee secret-shares xi to all other participants using a k-out-of-l verifiable secret
sharing scheme, so that cheating parties can be caught.

3. every k subset of the trustees can then perform the lk operations to decrypt an El
Gamal ciphertext with two layers of threshold actions, one layer to reconstitute the
actions of each xi, and another layer to reconstitute the actions of the xi’s into the
actions of the overall secret x.

Note that numerous variants of the Pedersen protocol have been published, and that
certain subtle weaknesses were revealed and fixed by Gennaro et al. in 1999 [74].

RSA. Obtaining threshold properties from RSA is significantly more challenging, in par-
ticular with respect to key generation, which requires that the product of two primes be
obtained without any single party knowing these two primes. Efficient schemes are known
[54, 155, 73, 161] for threshold decryption. In addition, schemes more efficient than generic
multi-party computation are also known for key generation [25, 69, 49], though they remain
quite a bit slower than those for discrete-log-based systems like El Gamal. At a high level,
these various protocols define the following operations:

53

• decryption: much like the El Gamal setting, the general idea of RSA threshold de-
cryption is to share a secret exponent, in this case the private exponent d, then use
Lagrange interpolation to recombine k out of l of these. Earlier work assumed this
interpolation was too difficult to perform over Z∗

n, since the order of the group is un-
known, and chose to perform polynomial interpolation over a subgroup of Z∗

n. Shoup
[161] showed that, if the primes factors of the RSA modulus are “safe primes”—e.g.
each is twice another prime plus 1—then polynomial interpolation is, in fact, possible,
over Z∗

n.

• key generation: Boneh and Franklin [25] first implemented a relatively efficient
scheme for the distributed generation of RSA keys, such that no one party learns
the factorization: each trustee obtains a share of the secret exponent d, at which point
threshold decryption is possible as described above. Frankel et al. [69] improved this
result by making the generation process resistant against active attack. Damg̊ard and
Koprowski [49] combined the efficiency of the Shoup scheme and the distributed nature
of the Frankel et al. scheme.

Paillier. Paillier uses number theory quite similar to RSA, but the decryption process is
not quite the same. Fouque et al. [68] show how to apply Shoup’s method of RSA threshold
decryption to Paillier. Damg̊ard and Jurik [48] show a related method that also applies to
their generalized version of Paillier. Damg̊ard and Koprowski [49] show how their method
for distributed RSA key generation can also be applied to Paillier.

2.5 Zero-Knowledge Proofs

A major component of verifiable voting protocols is the zero-knowledge proof. In a zero-
knowledge proof, a prover P interacts with a verifier V to demonstrate the validity of an
assertion, e.g. “ciphertext c under public key pk decrypts to ‘Mickey Mouse’.” If the prover
is honest—i.e. the assertion is true—then the verifier should accept this proof. If the
prover is dishonest—i.e. the assertion is false—then the verifier should reject this proof with
noticeable probability. Finally, the verifier should learn nothing more than the truth of the
assertion. In particular, the verifier should be unable to turn around and perform this same
(or similar) proof to a third party.

The notion of “zero-knowledge” is tricky to define: how can one capture the concept
that no knowledge has been transfered? The accepted approach is to look at the verifier
and see if its participation in the proof protocol bequeathed it any new capability. The
protocol is zero-knowledge if, no matter what the verifier outputs after the protocol, it could
have produced the very same output without interacting with the prover. Thus, though the
verifier may be personally convinced from its interaction that the prover’s assertion is indeed
true, the verifier is unable to relay any new information convincingly, in particular he cannot
perform the proof on his own.

54

The prover’s assertion is formally defined as “x is in language L,” where x is a string,
and L is a language, usually an NP language. Thus, the prover P is given x and a witness w
for x such that RL(x, w) = 1, where RL is the binary relation for language L. The verifier
V only gets x as input, of course. The zero-knowledge property of the protocol ensures that
the witness w, and in fact any non-trivial function of the witness, remains hidden from V .

Definition 2-7 (Perfect Zero-Knowledge Proof) An interactive protocol 〈P ,V〉 for lan-
guage L is defined as a perfect zero-knowledge proof if there exists a negligible function ν(·)
such that the protocol has the following properties:

• Completeness: ∀x ∈ L, Pr
[
outputV

〈P(x, w),V(x)
〉

= 1
]

> 1 − ν(k).

• Soundness: ∀P∗,∀x �∈ L, Pr
[
outputV

〈P∗(x),V(x)
〉

= 1
]

< 1
2

• Zero-Knowledge: ∃PPT S,∀V∗,∀x ∈ L,S(x) � outputV∗〈P(x, w),V∗(x)〉

2.5.1 Zero-Knowledge Variants

A few variants of this definition exist:

• Computational Zero-Knowledge (CZK): the verifier V , and thus the dishonest
version V∗, are probabilistic polynomial-time. In other words, a surprisingly powerful
verifier might be able to extract some knowledge from an execution of a CZK protocol.

• Zero-Knowledge Argument: the prover P is assumed to be computationally con-
strained, i.e. it is a PPT ITM . This setting must be considered with care, as the PPT
limitation is dependent on the security parameter κ, but P may spend significant time
preparing for the protocol execution.

• Honest-Verifier Zero-Knowledge (HVZK): the verifier V is expected to perform
according to the protocol. In particular, as the verifier is usually expected to submit a
random challenge to the prover, an honest verifier will always flip coins when picking a
challenge and will never base his challenge on the prover’s messages. The result of an
HVZK assumption is that the simulation proof can focus on simulating a transcript of
the interaction, rather than simulating anything V could output. An HVZK protocol
can be turned into a non-interactive zero-knowledge (NIZK) proof using the Fiat-
Shamir heuristic [65], where the verifier’s random messages are generated using a hash
function applied to the prior protocol messages. This hash function must be modeled as
random oracle, which has recently caused some concern in the theoretical cryptography
community [77].

55

Zero-knowledge proofs play a big role in verifiable voting protocols, where each player
must prove that it performed its designated action correctly while preserving voter privacy.
As the integrity of the vote takes precedence over the voter’s privacy, it can be immedi-
ately said that computational zero-knowledge proofs will be preferable to zero-knowledge
arguments. We will explore the details of these issues in Chapter 3.

2.5.2 Proofs of Knowledge

Certain zero-knowledge proofs provide an additional property that is particularly useful in
proving overall protocol security: they prove knowledge of the witness, not just existence.
In particular, this means that, given rewindable, black-box access to the prover program
P , one can extract a witness w to the assertion that x ∈ L. More formally, we define a
zero-knowledge proof of knowledge as follows.

Definition 2-8 (Zero-Knowledge Proof of Knowledge) An interactive protocol 〈P ,V〉
for language L is defined as a zero-knowledge proof of knowledge if the protocol is zero-
knowledge and it has the following, additional property:

• Extraction: ∃PPT ITM E ,∀(x, w) ∈ RL, EP(x,w)() = w. By EP(x,w), we mean that
we take the prover program P, provide it with inputs (x, w), and give the extractor
E black-box access to this initialized prover program, allowing the extractor to rewind,
reply, and provide continuing inputs to P.

A proof-of-knowledge protocol can be particularly useful in the context of reduction
proofs, since the extraction property allows a simulator to get the witness and use it in the
reduction process. A zero-knowledge proof without extractability is much more difficult to
integrate into a complete protocol security proof.

2.6 Program Obfuscation

Program obfuscation is a functionality-preserving transformation of a program’s source code
such that it yields no more information than black-box access to the original program. Uses
of obfuscation in practice include tasks such as “digital rights management” programs. From
a cryptographic standpoint, obfuscation presents enticing features in the realm of delegation:
Alice can delegate to Bob the ability to use her secret key for certain purposes only, like that
of decrypting emails with a particular subject.

Generalized program obfuscation, though it would be fantastically useful in practice, has
been proven impossible in even the weakest of settings [12, 78]. To date, point functions are
the only specific class of programs known to be obfuscatable [31, 173].

56

2.6.1 First Formalization

Program obfuscation was first formalized by Barak et al. [12], who also proved that there
exists a special class of functions that cannot be obfuscated under this definition. Informally,
an obfuscator transforms a program’s source code so that:

1. obfuscation preserves the program’s functionality,
2. the program’s size expands no more than polynomially,
3. the obfuscated source code yields no more information than black box access to the

original program.

We begin by formalizing a family of programs, then we define the obfuscation of such a
family.

Definition 2-9 (Program Class) A program class is a family { κ}κ∈ of sets of programs
such that there exists a polynomial s(·) such that |P| ≤ s(κ) for every P ∈ κ. The program
class is said to be PPT if, for every κ ∈ , for every P ∈ κ, P runs in probabilistic
polynomial time in κ.

Definition 2-10 (Program Obfuscation) An algorithm O is an obfuscator for a class of
programs { κ}κ∈ if

1. for every κ ∈ and for every P ∈ κ, O(P) computes the same function as P,

2. there is a polynomial l(·) such that, for every κ ∈ and for every P ∈ κ, |O(P)| ≤
l(|P|),

3. for every adversary Adv ∈ PT∗ that outputs a single bit (i.e. a predicate), there exists
a simulator S ∈ PPT and a negligible function ν(·) such that, for every κ ∈ , for
every circuit P ∈ κ∣∣∣Pr [Adv(O(P)) = 1] − Pr

[SP(1κ) = 1
] ∣∣∣ < ν(κ) .

where SP denotes the algorithm S with black-box access to P.

2.6.2 Auxiliary Inputs

In 2005, Tauman-Kalai and Goldwasser [78] showed that the Barak definition is insufficient
to cover many typical use cases of obfuscation. In particular, one must consider that the
adversary has access to additional inputs beyond just the program’s source code. In partic-
ular, what happens if the adversary receives two obfuscations of the same program? Or two
obfuscations of different programs? Both cases must be considered: obfuscation in the pres-
ence of independent auxiliary inputs, and obfuscation in the presence of dependent auxiliary
inputs.

57

Independent Auxiliary Inputs. Consider the case where Alice is given two obfuscated
programs, one from Bob and one from Carol. She may be able to use the obfuscated program
from Carol to extract information about Bob’s program. More specifically, Barak’s definition
doesn’t preclude Alice learning some predicate π(PBob ,PCarol). Note that the two programs
are generated independently. Tauman-Kalai and Goldwasser capture this situation as follows:

Definition 2-11 An algorithm O is an independent-auxiliary-input-secure obfuscator for a
class of programs { κ}κ∈ if

1. for every κ ∈ and for every P ∈ κ, O(P) computes the same function as P,

2. ∃ a polynomial l(·) such that, for every κ ∈ and for every P ∈ κ, |O(P)| ≤ l(|P|),

3. for every adversary Adv ∈ PT∗ that outputs a single bit (i.e. a predicate), there exists
a simulator S ∈ PPT and a negligible function ν(·) such that, for every κ ∈ , for
every circuit P ∈ κ and every auxiliary input z of size polynomial in κ (z may not
depend on P):

∣∣∣Pr [Adv(O(P), z) = 1] − Pr
[SP(1κ, z) = 1

] ∣∣∣ < ν(κ) .

Dependent Auxiliary Inputs. Consider the case where Alice receives two dependent
obfuscated programs from Bob. In this case, a slightly tweaked definition is required. As
we do not make use of it in this dissertation, we leave it unstated. One simply needs to
notice that the definition is effectively the same as Definition 2-11, with auxiliary input z
being quantified such that it can depend on P . The details can be found in Goldwasser and
Tauman-Kalai’s work [78].

More Capable Adversaries. In the past two definitions, adversaries are defined as mini-
mally capable: they only output a single bit. This is effectively a weak definition of obfusca-
tion, which strengthens the impossibility result. In cases where we wish to construct actual
obfuscations, however, we must consider adversaries that produce arbitrary (polynomial-size)
outputs. In particular, we must consider adversaries that output the obfuscated program it-
self! The simulator will need to simulate an obfuscated program that looks indistinguishable,
even though the simulator doesn’t know the parameters of this obfuscated program.

Successful Obfuscations. Based on the Barak et al. definition, Canetti [31] and Wee
[173] showed how to obfuscate point functions. Tauman-Kalai and Goldwasser showed how to
prove these constructions in their updated model. However, no other successful obfuscation
constructions have been proven.

58

Is Obfuscation Enough? Obfuscation is not enough for security. In particular, a program
might be inherently insecure: obtaining a number of input/output pairs for that program
might be enough to learn the exact circuit it computes, or at least learn some secret informa-
tion meant to kept secret. Even if such a program is successfully obfuscated, it still reveals
that same information. In other words, for most applications, the program that we wish to
obfuscate must be proven secure on its own before it can be obfuscated.

2.6.3 Public-Key Obfuscation

Ostrovsky and Skeith [132] propose a slightly different (and weaker) model of obfuscation,
where the outputs of the obfuscated program are encrypted versions of the outputs of the
original, unobfuscated program. In other words, their technique allows for outsourcing most
of a computation, but not all of it: a final decryption is still required after the obfuscated
program has been executed. They name this model public-key obfuscation.

Interestingly, because the outputs of a public-key-obfuscated program are encrypted, Os-
trovsky and Skeith’s definition is able to capture the additional notion of security missing
from the Barak et al. and Tauman-Kalai and Goldwasser definitions: output indistinguisha-
bility. Informally, a public-key obfuscator is secure when an adversary cannot distinguish
between the public-key obfuscations of two programs it selected (within a class of programs,
of course). We now provide a more formal definition. Given that different versions of Ostro-
vsky and Skeith’s work have provided slightly different definitions, we choose one that best
fits the work presented in this dissertation, in particular Chapter 6.

Definition 2-12 (Public-Key Obfuscation) The algorithm O is a public-key obfuscator
for the program class { κ} and the cryptosystem CS = (G, E ,D) if:

1. (Correctness) there exist a negligible function ν(·) such that, for every κ ∈ , for every
P ∈ κ, for all inputs x:

Pr
[
Dsk

(O(P)(x, R)
)

= P(x)
]

> 1 − ν(κ)

taken over the choice of R, an extra input which parameterizes the execution of O(P).

2. (Conciseness) there is a polynomial l(·) such that, for every κ ∈ and for every
P ∈ κ,

|O(P)| ≤ l(|P|)

Now, we must define what it means for this public-key obfuscator to be secure. Os-
trovsky and Skeith give an indistinguishability-based definition. Thus, consider first the
indistinguishability experiment. Informally, we first generate a keypair. Based on the public

59

key, the adversary selects two programs from the program class. We obfuscate one of the
two, selected at random, and we ask the adversary to guess which one was obfuscated.

We now formalize this intuition, which is much like the semantic security for encryption
schemes which we explored earlier in this chapter. We denote = { κ}κ∈ .

Experiment 1 (Indistinguishability, Expoind−b
,CS,O,Adv(κ))

(pk, sk)
R←− G(1κ)

(P0,P1, state) ← Adv(choose, pk),

d ← Adv(O(1κ, pk, sk,Pb), state)

If P0,P1 ∈ κ return d, otherwise 0.

We can now define the security property we seek from a public-key obfuscator.

Definition 2-13 (Secure Public-Key Obfuscation) A public-key obfuscator O for a pro-
gram class with respect to a cryptosystem CS = (G, E ,D) is secure, or polynomially indis-
tinguishable, if there exists a negligible function ν(·) such that:

∣∣Pr
[
Expoind−0

,CS,O,Adv(κ) = 1
] − Pr

[
Expoind−1

,CS,O,Adv(κ) = 1
]∣∣ < ν(κ)

Implementations. Ostrovsky and Skeith [132] implement the public-key obfuscation of
keyword searching on streams, a protocol with much practical potential, for example in
the intelligence community, where one can then outsource to an untrusted platform the
searching of streams of data for secret keywords. In Chapter 6, we give an implementation
of obfuscated shuffling based on a slight variant of this definition.

2.7 Universal Composability

In 2000, Canetti proposed the Universally Composable framework [32] for proving the secu-
rity of secure protocols. The goals of this framework are ambitious, and proving security in
the UC framework is quite powerful:

• the security properties of any interactive protocol can be described in this single frame-
work,

• once proven UC-secure, a protocol can be composed with other UC-secure protocols
to automatically yield a secure hybrid protocol.

• in particular, concurrent composition of different protocols preserves security.

We summarize the key points of the framework here, though the reader should consult
Canetti’s recently updated description [32] for details. Our take on the framework follows
Wikström’s simplifications [180], which enable us to focus on the key concepts of the frame-
work without getting lost in technical detail.

60

2.7.1 Why Another Model?

Goldreich, Micali, and Wigderson [76] introduced the concept of ideal-process simulation in
their seminal work of 1987. Goldwasser and Levin [79], Micali and Rogaway [116], and Beaver
[14] put forth formalized models of the idea in 1990 and 1991. One might wonder, then, why
we need another model? In fact, these earlier models did not capture every cryptographic
protocol; they are more adequate for straight-line computation rather than reactive protocols
(though they do address some reactive protocols.) Universal Composability follows in the
footsteps of these models with some additional properties:

1. complete modeling of reactive processes, such as bit commitments and signatures,

2. enforcement of a realistic ordering and timeline represented by the environment entity,
allowing for concurrent composition of protocols, and

3. modeling of adaptive adversaries.

2.7.2 High-Level Intuition

At a high-level, the UC framework declares a protocol secure if it is indistinguishable from
an idealized version of the protocol where a trusted third-party (TTP) performs all com-
putation. In this ideal world, a participant communicates directly with the TTP, which is
called an “ideal functionality” in the UC framework, and no one but the participant and
the ideal functionality sees the content of the messages they exchange. Because networks
are inherently imperfect, the ideal-world adversary does have one important ability: it can
delay messages arbitrarily long and, in particular, it can reorder messages.

Before any protocol can be proven secure in the UC framework, its specific ideal-world
functionality must be well defined. This is particularly important: one cannot define security
without thinking about the inherent properties of the protocol. For example, if a protocol
computes the average of all participant inputs, one should not be surprised if an adversary
discovers the sum of all inputs! No amount of cryptography will prevent this “information
leakage.”

Indistinguishable to Whom? In the UC model, two “worlds” are run in parallel: the
ideal world just described, and the real world that actually implements the protocol. The
distinguisher is called the environment, and is denoted Z. It provides the inputs to partici-
pants in both worlds, and can interrogate participants at any time for some output. In the
end, the distinguisher attempts to determine which was the real and which was the ideal
world. If he cannot succeed with probability better than 1/2, then the protocol is considered
secure.

61

Adversaries. In the “real world” of the UC framework, there may be any number of
adversaries that do any number of interesting things. In particular, the adversary may try
to learn data it should not have access to, e.g. one of the honest participant’s secret input,
and report it back to the environment. To say that a protocol is secure, we must be sure
that for every possible adversarial strategy in the real world, there is an adversarial strategy
in the ideal world that produces outputs that the environment cannot distinguish from the
real world.

This may be somewhat confusing to the reader: why would an adversary try to fool the
environment? The central point to understand here is that, in the ideal world, we must only
prove the existence of such an adversary, because, if any indistinguishable adversary exists
in the ideal world, it means the strategy used in the real world didn’t yield anything more
than it could have in the ideal world. In other words, the adversary gained no advantage
from seeing the real execution of the protocol rather than an idealized version of it.

We now present more details of the UC framework, though we leave the formal definitions
to the original paper [32]. Note that the UC model handles static and adaptive adversaries
differently. We describe adaptive adversaries at the end.

2.7.3 The Players

In the UC framework, participants P1, . . . ,PN are Interactive Turing Machines (ITMs), as
are the real-world and ideal-world adversaries, respectively A and S. The ideal functionality
is denoted F . Actions in the protocol are serialized: only one ITM is active at a given time,
though of course the actions of multiple ITMs may be interleaved. The ITMs are linked
via a communication network—denoted C and CI in the real and ideal worlds respectively
(this is the central simplification from Wikström [180])—whose job it is to automatically
enforce the constraints we assume about the network. We will return to the nature of these
constraints momentarily.

All messages sent either via C or CI are fully authenticated. Corruption and imperson-
ation are modeled, instead, by having the adversary explicitly corrupt certain players. In
particular, as mentioned earlier, adaptive corruption—when an adversary corrupts a par-
ticipant once the protocol has already begun—is considered separately, as it is particularly
challenging.

In the ideal world, honest players P1, . . . ,PN are nothing more than dummy participants
whose job it is to forward the inputs provided by Z straight to the ideal functionality.
Similarly, they pass any output received from the ideal functionality straight back to the
environment Z.

Initialization and Adversarial Capabilities. At the beginning of the protocol, the real-
world adversary must decide which participants {P̃j} it wishes to corrupt (recall that we
consider adaptive adversaries separately). The ideal adversary S corrupts the corresponding
participants. Then, the environment Z provides inputs to all of the participants in both the
real and ideal worlds.

62

In both worlds, the adversary learns the inputs of the corrupt parties {P̃j}. In addition,
in the real world, the adversary A can see all messages exchanged between the honest
parties, and can send any message it wants from the corrupt parties. In the ideal world, no
messages are exchanged directly between parties, thus S doesn’t see any of the content of
these messages. However, it is made aware of the message envelope: who sends how much
data to whom. It may choose to delay any message as long as it desires. It also controls the
corrupted participants’ input sent to the ideal functionality.

The network’s properties are embodied in the communication model: C in the real world
and CI in the ideal world. Participants send and receive all messages through this communi-
cation model. In the real world, C simply reports a copy of all messages to A, and waits for
A’s signal to deliver the message to its intended recipient. In the ideal world, CI only reports
the message envelope to S, and waits for its signal to deliver the content of the message.
With C and CI in the model, the ideal functionality specification can be greatly simplified:
all network traffic control issues are generically defined by C and CI .

2.7.4 Simulation and the Environment Distinguisher

To prove security, one must construct an ideal adversary S which produces outputs indistin-
guishable from those of A in the real world, no matter what A does. Thus, using a classic
simulation paradigm, S will use A as a black box, simulating for A the rest of the protocol
to elicit from A an output indistinguishable from that which it gives in the real world.

More specifically, S must simulate to A all of the honest participants in the protocol.
Where corrupt participants are concerned, S simply receives their inputs from Z and forward
them to A. S’s central job—and the crux of the difficulty of any UC proof—is to somehow
simulate messages to A on behalf of the honest parties in the protocol when S doesn’t
know their real input. At specific points in the protocol, S receives outputs from the ideal
functionality that are destined for corrupt parties, which S can then use in the protocol
simulation to A.

Rewinding. In typical black box simulation proofs, it is common to rewind the black box
a number of times to extract a witness from a proof of knowledge provided by the black
box. Unfortunately, this type of rewinding is quite limited in the UC model, because the
environment can never be rewound. Thus, any messages sent to the environment cannot be
taken back, and the ideal adversary S must be able to answer queries from the environment
at any time as if it were the real adversary A.

As a result, many protocols proven secure in the UC model use so-called straight-line
extractable proofs of knowledge. In these proofs, the simulator is able to extract the witness
not by rewinding, but by carefully crafting the parameters. One well-known example of
this parameter crafting is the double-ciphertext trick of Naor and Yung [122] for building
CCA2-secure cryptosystems.

63

2.7.5 Composability and the Hybrid Model

The particular strength of the UC model is its composability theorem. Consider an ideal
functionality FA, securely implemented by a protocol πA. Then, consider an ideal function-
ality FB that we wish to implement. If we build a protocol πB that uses protocol πA as
a subprocedure, once or many times, serially or concurrently, then we can prove that πB

securely implements FB without considering the details of πA.
Specifically, rather than comparing the real world to the ideal world directly, we compare

a hybrid world to the ideal world. In this hybrid world, the participants P1, . . . ,PN run the
actions of protocol πB normally. However, when they want to run protocol πA, they simply
use the ideal functionality FA directly in this hybrid world. FA behaves in the hybrid world
exactly like any ideal functionality behaves in the ideal world: the adversary, in this case A,
only sees the envelopes of messages between FA and the honest participants, though it can
reorder and delay messages indefinitely as usual.

2.7.6 An Example of a UC Functionality

As an example of a UC functionality, we present the mixnet functionality first proposed by
Wikström [179]. This functionality shows both the simplicity and subtlety of defining a UC
functionality. Specifically, the actions of the ideal functionality are quite simple: take the
inputs, order them, and eventually output them in lexicographical order.

Functionality 1 (Mix-Net) The ideal functionality for a mixnet, FMN, running with mix-
servers M1, . . . ,Mk, senders P1, . . . ,PN , and ideal adversary S proceeds as follows

1. Initialize the following storage:

• list L = ∅, the list of messages received from senders,

• set JS = ∅, the set of senders who have sent a message, and

• set JM = ∅, the set of mix servers who have asked the mix to run.

2. Repeatedly wait for messages from CI:
• Upon receipt of (Pi, Send, mi) with mi ∈ {0, 1}κ and i �∈ JS:

– set L ← L ∪ {mi}
– set JS ← JS ∪ {i}

• Upon receipt of (Mj, Run):

– JM ← JM ∪ {j}
– If |JM | > k/2, then sort the list L lexicographically to form a list L′, and

send:

∗ {(Mi, Output, L
′)}k

i=1

64

and ignore further messages.

If |JM | ≤ k/2, send (S,Mj, Run), and keep waiting for messages.

Recall that, using Wikström’s simplified notation, we assume that all sent and received
messages go through CI , which routes envelopes appropriately to the ideal adversary S.

2.8 Voting Protocols

Voting protocols are numerous and diverse. In this section, we review their history. We begin
with a high-level description of a voting protocol, generic enough to encompass most of the
known proposals. We focus on mixnet-based and homomorphic-aggregation voting systems,
as they are the two major types of universally verifiable voting systems. The process and
notation are diagrammed in Figure 2-1. We do not consider blind signature voting schemes
here, as these have fallen out of favor for lack of universal verifiability. We refer the reader
to the work of Gritzalis [86], which provides a review of all secure voting methods.

2.8.1 High-Level Process

Verifiable voting protocols in the literature all present the following sequence of events:

1. Setup: Election setup parameters are generated and published.

2. Ballot Preparation: Alice, the voter, prepares her ballot with the help of a special
ballot or machine. The result is an encrypted vote.

3. Ballot Recording: Alice’s encrypted ballot is posted on a world-readable bulletin
board, paired with Alice’s identity in plaintext.

4. Anonymization & Aggregation: A publicly-verifiable shuffling (and potentially
aggregation) algorithm is run, with intermediate results posted on the bulletin board.

5. Results: Election officials cooperate to produce a plaintext tally for each race, again
with publicly-verifiable proofs posted to the bulletin board.

In general, two large categories of schemes exist: aggregate voting schemes, and ballot-
preserving voting schemes. In the former system, the output of the protocol indicates only
the aggregate number of votes for each candidate in each race. In ballot-preserving voting
schemes, all plaintext ballots are preserved in their entirety all the way through the tallying
process.

65

2.8.2 The Players & Setup

We designate by l the number election officials, where official i is designated Officiali. We
designate by N the number of voters, where voter j is designated Voterj. The election itself,
designated Election, defines s races, where race k is designated Rk. Race Rk has ok pre-defined
options to choose from, though, if the protocol supports it, the voter could select to write in
a value. In general, Voterj’s selection for race Rk is denoted t

(k)
j . Voterj’s ballot is thus

mj = (t
(1)
j , t

(2)
j , . . . , t

(s)
j).

The election Election defines configuration parameters, including a system-wide public
key pk and l secret key shares sk (1), . . . , sk (l), where sk (i) belongs to election official Officiali.

2.8.3 Casting a Ballot

Voterj casts plaintext ballot mj encrypted into cj using randomization value rj under public
key pk . The encryption algorithm depends on the tallying and anonymization technique,
though it must clearly be semantically secure (and thus randomized.) Specifically, the en-

coding mechanism of mj = (t
(1)
j , t

(2)
j , . . . , t

(s)
j) depends on the tallying mechanism, though

once the encoding is achieved, most schemes perform a normal public-key encryption under
pk .

The key requirement, when Alice casts a ballot, is that she gain assurance that cj encodes
her intended ballot mj. At the same time, Alice should not be coerced by an adversary. Here,
we review these two issues, starting with incoercibility. We then specifically review proposals
that prove to Alice that her vote correctly encodes her intent while taking into account the
fact that Alice is human and cannot perform much computation on her own.

Incoercibility

An important requirement of elections is that adversaries not be able to coerce voters. Often,
this property is called receipt-freeness, because the protocol must not provide a true receipt
of interaction that the voter could present to a coercer. Recall that we cannot simply build a
system where Alice is expected to discard her receipt of her own volition, because a coercer
can threaten retribution if Alice doesn’t preserve her receipt. We note that the terminology
of receipt-freeness can be confusing because the word “receipt” is misleading: it is possible
to provide the voter with a secret receipt that she can use for personal verification, but not
for proving to a coercer how she voted. The word incoercibility better characterizes this
property.

The key challenge of achieving incoercibility is to design a process that convinces Voterj
that cj is indeed the encryption of mj, her plaintext vote, without revealing the randomiza-
tion value rj. Indeed, as we will see, cj is generally posted on a public bulletin board, along
with the voter’s name or identifier, for all to see. Thus, if Voterj learns rj, she can trivially
prove how she voted.

66

Benaloh and Tuinstra [20] first introduced and implemented incoercible voting in 1994. In
their basic proposal, Alice, the voter, is isolated in a typical voting booth, where she privately
receives the decryption of some publicly available ciphertexts. She then publicly casts a ballot
using a selection of these encrypted bits, whose plaintext value she just learned. Since Alice
does not learn the randomization values for these ciphertexts, and since the cryptosystem is
semantically secure, she cannot prove how she voted, and no coercer can figure it out on his
own either. In their more advanced protocol with multiple authorities, Alice receives proofs
of plaintext value that she can even manipulate to claim the opposite of how she actually
voted.

The voting booth is effectively a private channel between the voter and the election
officials. Using this model, a number of additional schemes were developed. Sako and Kilian
[150] and Cramer et al. [45] generalized the schemes of Benaloh and Tuinstra and improved
its efficiency, though still for approval voting, where ballots are either 0 or 1. Sako and
Kilian [151] also adapted these receipt-free techniques to mixnet voting. Okamoto [129]
provided receipt-freeness for blind-signature based voting with full-length plaintexts, based
on trapdoor commitments: Alice can claim to have voted differently than she actually did.

In 1996, Canetti and Gennaro [33] presented a more generic definition of incoercible
multiparty computation and showed how to accomplish it without the private channel as-
sumption. Instead, they use deniable encryption, where the sender of an encrypted message
can “present a different story” regarding the encrypted message’s plaintext. They specifically
implement threshold deniable encryption, which is critical for the voting setting. Interest-
ingly, they also show that incoercible computation is impossible in the face of unbounded
coercers. This will be particularly interesting to our work on Assisted-Human Interactive
Proofs, in Chapter 5.

The techniques of incoercibility have been particularly explored in the case of homomor-
phic voting schemes, where efficiency is a critical factor. Of particular note is the work of
Cramer et al. [46], Hirt and Sako [90], and Baudron et al. [13]. We briefly review their work
in the upcoming paragraph on homomorphic voting schemes.

Human-Verifiable Voting Systems

All of the incoercible schemes just described assume a computationally capable prover: an
unaided human cannot perform the math required to participate in the protocol. This is of
singular concern in the case of voting systems: if Alice needs to use a computer to cast her
ballot, then she must trust the computer. This is by no means a trivial proposal in the case
of a federal election where the stakes are particularly high (see Chapter 1).

Neff [28] first proposed a scheme where voting machines that assist Alice in casting her
ballot can be audited during election day. At any time, an election official (or other auditor)
can use the machine as if he were a voter, then request an audit. Probabilistically, the voting
machine cannot cheat more than a handful of voters before it gets caught.

Chaum [40] introduced the term “secret-ballot receipts.” In his proposal, a voting ma-
chine prints a special ballot composed of two layered pieces of paper where each half looks
random, but the superposition of the two layers yields the plaintext vote, as defined by Naor

67

and Shamir [121] in their work on visual cryptography. Numerous variants have emerged
from this work, including Ryan’s Prêt-a-Voter [41] and Chaum’s own simplified version [66].
In Chapter 4, we present our own variant of this type of scheme, with some interesting new
properties.

Neff [29] also proposed a machine-based system with a proof technique that can be split
into two parts: an interactive portion verified by a human inside a voting booth, and a
non-interactive portion verified by a helper outside the voting booth. The non-interactive
portion should not reveal the plaintext of the vote, of course. In Chapter 5, we formalize this
type of proof with a human-verifiable version of incoercibility, tweak the original protocol to
make it truly incoercible according to this definition, and provide a more efficient version of
the protocol.

2.8.4 Anonymizing and Aggregating the Ballots

Once a ballot has been correctly encrypted, it is posted on a bulletin board for all to see. The
ballots must then be anonymized and aggregated in some way. The process for anonymiz-
ing and aggregating ballots differs significantly between the ballot-preserving and aggregate
voting systems. Thus, we consider each one separately. We spend a bit more time review-
ing the known techniques for aggregate ballot systems, because Chapter 3 addresses the
ballot-preserving schemes in great detail.

Ballot-Preserving Election Systems

In the case of ballot-preserving election systems, election officials cooperate to perform
anonymization of the ballots. The encrypted inputs are denoted:

{c0,j}j∈[1,N]

Each election official Officiali, with i ∈ [1, l], in turn processes the encrypted votes. The
inputs to Officiali are denoted:

{ci−1,j}j∈[1,N]

while its outputs, which are also the inputs to Officiali+1, are denoted:

{ci,j}j∈[1,N]

The type of anonymous channel that performs this repeated shuffling is called a mixnet,
and each official is called a mix server. Numerous techniques exist for this process. The
details and chronology are detailed in Chapter 3, but we give a brief overview here.

Chaum [39] introduced mixnets in 1981. Mixnet-based protocols evolved significantly
throughout the 1990s starting with Pfitzmann and Pfitzmann’s break and fix of Chaum’s
original mixnet [138]. Reencryption mixnets were introduced by Park et al. [134], making
ciphertexts length-invariant in the number of mixes. The scheme was broken and fixed by

68

Pfitzmann [136], who introduced improved semantic security for El Gamal using q-order
subgroups. Sako and Kilian [151] introduced universally-verifiable mixnets, which Ogata et
al. [127] made robust against failure and Abe [1] made verifiable in time independent of
the number of mix servers. Then came a number of schemes [2, 70] that provided more
efficient universally verifiable proofs using special algebraic properties, rather than generic
cut-and-choose, in particular Neff’s scheme [124], using proof of equality of exponent vector
dot product, which Groth [87] generalized to the abstract homomorphic setting. Most re-
cently, Wikström introduced a security definition of a mixnet in the UC setting [179], and
a new proof of shuffle secure against this definition [180], including an adaptively-secure
mixnet [181] in collaboration with Groth.

Aggregate Voting Systems

In the case of aggregate voting systems, the encrypted votes {cj}j∈[1,N] are generally combined

into a single set of ciphertexts C
(k)
tally , where C

(k)
tally encodes the tallies for race Rk. Depending

on the scheme and the size of the election, C
(k)
tally may be a sequence of ciphertexts, though

usually never more than one per candidate (i.e. not one per voter, as that would make it a
ballot-preserving scheme.)

Aggregate voting systems typically use homomorphic cryptosystems to maintain and
increment aggregate tallies under the covers of encryption. Benaloh [43, 19] presented the
first practical additive homomorphic scheme for just this purpose: a yes-vote is an encrypted
‘1’, a no-vote is an encrypted ‘0’. The tally is achieved by homomorphic addition, which
anyone can do using only the public key, and threshold decryption, which the officials perform
together.

Cramer et al. [45] provided performance improvements, specifically regarding the effect
of multiple authorities, and, most interestingly, provided information theoretic privacy of the
votes posted on the bulletin board, assuming a separate private channel between the voter
and official (e.g. a voting booth). A further improvement by Cramer et al. [46] achieved
optimal performance, though “only” with computational privacy.

The problem with additive homomorphic schemes is that they typically achieve their
desirable homomorphism by placing the plaintext in the exponent, so that ciphertext multi-
plication will yield plaintext addition. Consider, as an example, the Exponential version of
El Gamal:

(gr, gmyr) × (gr′ , gm′
yr′) = (gr+r′ , gm+m′

yr+r′)

Thus, until 1999, all of these schemes required the computation of a discrete logarithm for
decryption, which significantly limits the plaintext space. For single-race approval elections,
this is typically not a problem, as the total counter remains quite small: even a counter
that can accommodate one hundred million voters requires no more than 28 bits. However,

69

with multiple candidates and multiple races, the early homomorphic ballots quickly becomes
unwieldy, requiring one ciphertext per candidate per race for each ballot.

Major progress in homomorphic aggregation techniques became possible with the in-
troduction of the Paillier cryptosystem [133], which offers an additive homomorphism with
efficient decryption. It then became possible to “pack” multiple counters within a single en-
crypted tally, leading to the efficient protocol of Baudron et al. [13] for multiple candidates
and races. In addition, the work of Damg̊ard and Jurik [48] on generalized Paillier enabled
even larger plaintext spaces, thus enabling more counters—and thus larger elections—in a
single ciphertext tally.

One notes that all homomorphic cryptosystems require extensive checks on the inputs
they process. Otherwise, a malicious input might simply add ‘1000’ into the count of the
adversary’s favorite candidate. Benaloh [43, 19] first described a zero-knowledge proof of
correct form for his ballots, and subsequent homomorphic schemes have provided similar
proofs for their inputs.

2.8.5 Tallying

Whether the anonymization and aggregation process yields a handful of tally ciphertexts
or individual encrypted ballots, all voting systems then require election officials to perform
some form of threshold decryption on these resulting ciphertexts. In the case of an aggregate
voting scheme, the result is M

(k)
tally for each race Rk. In the case of ballot-preserving voting

schemes, the result is a set of plaintext ballots, {m′
j}j∈[1,N].

Of course, the specific method of threshold decryption often depends significantly on the
method used to anonymize and aggregate the encrypted ballots. In particular, a number
of mixnet schemes provide combined decryption and shuffling: each election official shuffles
and partially decrypts. Again, the details of these schemes is presented in Chapter 3.

70

E
lection P

aram
eters

V
o
t
e
r
1

V
o
t
e
r
2

...
...

c
1

c
2

E
n

cryp
ted

 Vo
tes

...

......

c
1
,
π

1

c
2
,
π

2

C
(
1
)

t
a
l
ly

C
(
2
)

t
a
l
ly

C
(
s
)

t
a
l
ly

.
.
.

...
...

Official1

Official2

Officiall

.
.
.

Π
a
g
g
r
e
g
a
t
e

T
hreshold

T
hreshold

M
(
1
)

t
a
l
ly

M
(
2
)

t
a
l
ly

M
(
s
)

t
a
l
ly

...

m
′1

m
′2

...

p
k
,
p
u
b
lic

k
e
y

H
o

m
o

m
o

rp
h

ic Tallyin
g

M
ixn

et

N
,

n
u
m

b
e
r
o
f
v
o
t
e
r
s

V
o
t
e
r
N

m
1

=

(

t
(
1
)

1
,
t
(
2
)

1
,
.
.
.
,
t
(
s
)

1

)

m
2

=

(

t
(
1
)

2
,
t
(
2
)

2
,
.
.
.
,
t
(
s
)

2

)

m
N

=

(

t
(
1
)

N
,
t
(
2
)

N
,
.
.
.
,
t
(
s
)

N

)

E
p
k

...

c
N

c
N

,
π

N

D
s
k

D
s
k

m
′N

R
1

R
2

R
s

.
.
.

R
aces

E
p
k

E
p
k

π
1
,
.
.
.
,
π

N

c
1
,1

l,
n
u
m

b
e
r
o
f
o
ffi

c
ia

ls

s
,

n
u
m

b
e
r
o
f
r
a
c
e
s

π
j
,

p
r
o
o
f
o
f
v
a
lid

b
a
llo

t

c
1
,
N

c
1
,2

c
l
,
1

c
l
,
2

c
l
,
N

c
2

=
c
0
,2

c
N

=
c
0
,N

c
1

=
c
0
,1

Figure 2-1: Cryptographic Voting Notation: Homomorphic Tallying and Mixnet.

71

72

Chapter 3

Verifiable Mixnets: A Review

3.1 Introduction

Consider a set of senders, each with a private message, who wish to generate a shuffled
list of these messages, while keeping the permutation secret. Protocols that implement this
functionality were first introduced by Chaum [39] in 1981, who called them mixnets. There
are many different types of mixnets, and many different definitions and constructions. At a
high level, mixnets can be categorized into two groups: heuristics-based mixnets, and robust
mixnets.

Heuristics-based mixnets tends to mix inputs more or less synchronously for low-latency
applications such as anonymized web browsing [57]. These mixnets generally focus on achiev-
ing some level of privacy, without usually worrying about robustness: if a few mix servers
drop or otherwise corrupt messages, the impact on the application is generally not horrible:
a sender can simply retry using a different set of mix servers.

By contrast, robust mixnets handle applications like voting, which have significantly dif-
ferent requirements. On the one hand, they provide far more flexibility: mixing can take
hours or, in some cases, even days, because shuffling is performed in large, well-defined
batches, with no need for real-time responses. On the other hand, the correctness require-
ments are much more stringent: inputs should not be lost or altered, in some cases even
when all mix servers are corrupt. The privacy of the shuffle permutation is also important,
and should be provably—not just heuristically—protected.

In this chapter, we review the past 25 years of literature on verifiable mixnets. We note
that this area of research has been quite productive, with numerous directions explored,
interesting attacks discovered, and fascinating techniques developed to improve efficiency.
The security definitions have evolved, too, especially in light of recent security frameworks
for composability. In short, mixnets have been a fertile area of research. For their critical
role in key cryptographic applications, they deserve careful consideration.

73

3.2 Notation & Preliminaries

We begin with some brief preliminaries regarding notation, categorization of mixnets accord-
ing to properties of soundness and privacy, and the omnipresent bulletin board in all mixnet
proposals.

3.2.1 State of Notation

In the scope of heuristics-based mixnets, where the anonymization process is often called
onion routing, there has been much debate about notation and a recent attempt at simpli-
fication and standardization [42]. However, the notation difficulties of onion routing are not
the same as those encountered in describing robust mixnets. Most modern robust mixnets
consider the actions of individual mix servers, rarely needing to consider the full composition
of symmetric key encryptions. Thus, there is rarely a need to represent the multi-wrapping
of an onion.

On the other hand, the widely varying notation used over the years of robust mixnet
development remains an impediment to the understanding and comparison of various tech-
niques. Here, we provide a notation generic enough to represent the various robust schemes.
The notation aims to be simple and intuitive enough to understand and read quickly. It is
optimized for schemes that focus on individual mix servers, eschewing attempts to compactly
represent the actions of the mixnet as a whole, except where the algebra inherently simplifies
such notation, of course.

3.2.2 Mixnet Notation

Consider a mixnet M composed of l mix servers, where the i’th mix server is denoted Mi, and
i is 1-indexed. For j ∈ [1, N], Mi receives ciphertext inputs ci−1,j and produces ciphertext
outputs ci,j. We denote MD(i−1) and MD(i) the decryption algorithms for ciphertexts
before and after mix server Mi, respectively, noting that the decryption algorithms may be
the same. We emphasize that these decryption algorithms are not be part of the mixnet
itself, as the mix servers do not know how to fully decrypt the messages. We denote πi the
permutation applied by mix server Mi. Then, each mix server Mi computes its outputs
such that:

∀i ∈ [1, l],∀j ∈ [1, N],MD(i)
(
ci,πi(j)

)
= MD(i−1) (ci−1,j) .

This setup is diagrammed in Figure 3-1.

Notation for Randomization Values. When a mix server Mi provides a proof of mix-
ing, it is usually a proof of knowledge of πi and randomization factors ri,1, ri,2, . . . , ri,N . These
randomization factors could be used for reencryption, or could be random padding extracted
after a decryption. In some edge cases, e.g. Wikström’s sender-verifiable mixnet [180], the
entire witness wi may, in fact, be a short secret, e.g. a secret key sk i.

74

M1

M2 Ml.
.
.

.

.

.
. . . .

.

.

Mi

.

.

.

. . . .
.
.

c1,1

c1,N

c0,1

c0,2

c0,N

c1,2

c2,1

c2,2

c2,N

ci,1

ci,2

ci,N cl,N

cl,2

cl,1

Figure 3-1: Mixnet Notation. There are l mix servers, and N inputs.

3.2.3 Categorizing Mixnets

For mixnets that provide interactive proofs of correctness—the ones we’re really interested
in—there are two major issues to consider: how much information leaks, if any, and un-
der what conditions can the mix servers cheat the proof protocol. These are not boolean
questions of course: some information leakage may be acceptable, and some hardness as-
sumptions may be acceptable to guarantee soundness. However, it is important to be aware
of these issues when comparing different mixnet constructions.

Privacy. Privacy in a mixnet always depends on computational assumptions: since the
inputs and outputs are ciphertexts in a public-key setting, a computationally-unbounded
adversary can simply decrypt the inputs and outputs and discover the mixnet permuta-
tion. Thus, any privacy guarantee is made under computational assumptions. The more
interesting question is the completeness of the privacy. We consider three levels of privacy
completeness in a mixnet:

• complete & independent: all permutations of inputs-to-outputs are possible, and a
computationally-limited adversary gets no information about any correspondence. If,
through other channels, some subset of the input-output correspondences are revealed,
the proof does not provide any additional correspondences.

• complete but dependent: any input can go to any output, but not all permutations
are possible. In other words, if a subset of correspondences are revealed through other
channels, the proof may leak additional correspondences.

• incomplete: the proof itself narrows down the possible correspondences: only some
subset of the inputs may correspond to some subset of the outputs.

Clearly, from a theoretical standpoint, the complete & independent proofs are the
most interesting, and, in fact, the only ones likely to fulfill reasonable security definitions.

75

However, for some practical settings like voting, the other schemes are still useful: if votes
are shuffled across many thousands of voters, revealing some dependencies in the shuffle
may be no more harmful than the practical leaks already encountered in the normal voting
process, e.g. the precinct’s historical voting patterns, the voter’s party registration, etc

Soundness. The soundness requirement presents significantly more variability. In partic-
ular, it is possible to achieve overwhelming soundness without any hardness assumptions.
This is particularly interesting in the voting setting, of course, as one must assume that a
corrupt mix server has significant computational power at its disposal: it is quite reassuring
when no amount of computational power can help the mix server cheat.

We note that, in the case of zero-knowledge protocols, the question at hand is whether
the protocol is a zero-knowledge proof or a zero-knowledge argument [75]. We consider this
problem more generally, however, given that not all mixnet proofs are zero-knowledge. Thus,
we distinguish three levels of soundness:

• overwhelming proof: even a computationally unbounded prover has a negligible
chance of successfully proving an incorrect shuffle.

• overwhelming argument: a computationally bounded prover has a negligible chance
of successfully proving an incorrect shuffle.

• high but not overwhelming proof or argument: a prover has a small, but not
negligible, chance of successfully proving an incorrect shuffle.

From a practical standpoint, the overwhelming proofs are clearly more interesting. The
high-but-not-overwhelming techniques are typically much more efficient, and can be viewed
as techniques to provide “early returns” in the voting setting.

Interaction of Soundness and Privacy. The two issues of soundness and privacy are
intrinsically linked. In particular, if a proof technique is fast but not overwhelmingly sound,
it can still be useful, as long as it doesn’t leak privacy. One can always perform multiple
proofs in series: a fast but not overwhelmingly sound proof for early approximate results, and
a slower, overwhelmingly sound proof for final assurance. If the former proof fully protects
privacy, then there is no disadvantage to using it. (Running these proofs in parallel is risky,
unless they’ve been proven secure in an appropriate model.)

3.2.4 The Bulletin Board

Most robust mixnet protocols make use of a bulletin board, which we denote BB. This
bulletin board is effectively a robust, authenticated broadcast channel. In the universally
verifiable setting, it is expected that all postings to BB are recorded for any observer to
check. We do not cover the various known algorithms for implementing such a bulletin
board, though we note that, without pre-existing cryptographic assumptions like a public-
key infrastructure, the problem is one that requires a Byzantine agreement algorithm, as the

76

servers that implement the bulletin board may be corrupt. In this case, fewer than 1/3 of
the servers can be corrupt. The reader may wish to consult the work of Lindell, Lysyanskaya
and Rabin [110].

3.2.5 Structure of this Work

The various mixnet protocols developed over the years introduced and progressively stan-
dardized various design techniques. Many of these techniques are, by now, quite common
and well understood, their origin almost forgotten. Wherever possible, we point out the
design patterns introduced by each construction, and we reference them when subsequent
constructions reuse these patterns.

In addition, various types of attacks have emerged over the years. When a novel type
of attack is presented, we also point it out. When a variant of an attack is introduced, we
indicate its genealogy.

As a result, the earlier mixnets are described in greater detail, so that the design principles
may be fleshed out. The later mixnets are described more briefly, referencing past design
principles, past attacks and countermeasures, and detailing only the novelties introduced.
Where the complexity of a scheme is particularly high, we only give a high-level intuition,
referring the reader to the original work for the details.

Of course, we cannot be complete: there are dozens and dozens of mixnet papers. We
attempt to cover the most important ones, specifically the contributions that are most often
referenced and that have contributed to the most useful mixnet research directions.

Chronology. We begin, in Section 3.3, with a description of the first mixnets: Chaum’s
decryption mixnet and Pfitzmann and Pfitzmann’s relation attack, then Park et al.’s reen-
cryption mixnet and Pfitzmann’s semantic security attack. In Section 3.4, we cover the
major wave of universally verifiable mixnets: Sako and Kilian’s ground-breaking work and
the Michels-Horster attack, Ogata et al.’s alternative verification proposal, Abe’s improved
proof, and Jakobsson et al.’s generic method – randomized partial checking—for checking
any mixnet with slightly relaxed soundness. In Section 3.5, we cover the efficient alge-
braic proofs: Abe’s permutation network scheme, Juels and Jakobsson’s millimix, and the
linear-time proofs of Furukawa and Sako and, independently, Neff (including Groth’s gener-
alization). Then, in Section 3.6 we explore various proof attempts using aggregate properties
including work by Jakobsson and Golle et al., and we note the surprising number of attacks
discovered against such techniques, including those of Desmedt and Kurosawa, and Wik-
ström. In Section 3.7, we briefly review some particularly interesting variants, including
hybrid mixing, universal reencryption, almost entirely correct mixing, and Parallel Mixing.
Finally, in Section 3.8, we give an overview of the latest, universally composable security
definitions for mixnets, with a focus on Wikström’s latest constructions. We conclude with a
summary table of some of the mixnet schemes we covered in Section 3.9, and some thoughts
on where future mixnet research is likely to go.

77

3.3 Early Mixnets

3.3.1 Chaumian Mixnet

The first mixnet was introduced by Chaum in 1981 [39], using RSA onions with random
padding. Mixnets based on this concept of composed encryption and single-layer decryption
at each mix server are sometimes called “Chaumian mixnets.” Each mix server Mi has a
public key pk i and corresponding secret key sk i. Inputs to the mixnet are prepared as:

c0,j = Epk1

(
r1,j, Epk2

(
r2,j, . . . Epk l

(rl,j, m) . . .
))

Each mix server Mi then decrypts the outer layer of this onion (if things are done
correctly, then the outer layer can be decrypted by the designated mix server), removes the
random padding ri,j, and outputs the resulting set of diminished onions in lexicographic
order.

Design Principle 1 (Encrypted Onion) A plaintext is repeatedly wrapped using a dif-
ferent public key and random padding at every layer. Each layer is unwrapped by the corre-
sponding mix server.

Sender Verification in Voting Protocol. Chaum proposes a variant of this channel for
voting protocols, in order to help voters check that their vote was properly forwarded along.
The protocol requires two runs of the mixnet: in a first run, Alice sends a public key pk j for
which she has the secret key sk j. She then checks that her public key makes it on the final,
decrypted posting to the bulletin board. Then, in the second run of the mixnet, she sends
(pk j, Eskj

(mj)), where mj is her vote, padded with a pre-determined number of 0s. Note
how encryption is performed with the secret key here, flipping the public-key cryptosystem
around. Then, everyone can perform the public-key based decryption of the vote in the final
round, verifying that only 0-padded results emerge.

This two-step mixing ensures that, in the first phase, a voter can complain if her public
key doesn’t end up on the bulletin board by revealing all of her randomization values. Then,
in the second phase, only messages formed with the first-phase public keys are allowed on
the bulletin board. No one but the sender—in possession of sk j—can prepare a properly
0-padded plaintext.

Breaking the First Chaumian Mixnet. Nine years after the publication of this first
Chaumian mixnet, Pfitzmann and Pfitzmann discovered a significant attack using the multi-
plicative homomorphism of raw RSA and the independent randomness of the padding [138].
The attacker uses two sequential shuffles, providing an adaptively-chosen input to the second
shuffle in order to trace an input of the first shuffle.

Specifically, if the attacker wishes to trace input c0,j in the first batch, he provides to the
second batch the input c∗ = c0,j ·Epk1

(f), using a small f . This algebraic relationship between
the inputs yields an algebraic relationship between the outputs, even with the padding. With

78

high probability, no other pair of outputs bears this same relationship. The attacker can
thus check every possible output pair until the relationship is found, thereby tracing where
the targeted output of the first batch ended up. We call this the related input attack.

Attack 1 (Related Input) Eve, a malicious participant, submits a mixnet input that is
related to Alice’s honest input. The ciphertext relationship results in a plaintext relationship,
which Eve can detect in the mixnet outputs: Eve discovers Alice’s private input.

Pfitzmann and Pfitzmann briefly mention potential countermeasures relating relating to
sender-commitments of their inputs and adaptively-secure cryptosystems, but they do not
delve into complete details.

3.3.2 First Reencryption Mixnet

In 1993, Park et al. [134] noted that Chaumian Mixnets require a ciphertext size proportional
to the number of mix servers, given the concatenation of randomness at each layer of the
onion. They proposed the first reencryption mixnet, where each mix server rerandomizes the
ciphertexts with fresh randomization values that get algebraically combined with existing
randomness, rather than concatenated.

The system parameters are p, a prime, the factorization of p − 1, and g a generator of
Z∗

p (the factorization of p − 1 is made available to ensure that anyone can verify that g is a
generator). Each mix server Mi generates a secret key

sk i = xi
R←− Z∗

p−1

and the corresponding public key

pk i = yi = gxi mod p.

We denote El Gamal ciphertexts as:

c = Epk(m; r) = (α, β) = (gr, m · yr)

Consider the mixnet’s joint public key:

PK =
l∏

i=1

pk i = g
Pl

i=1 xi = Y

Recall the ability to perform reencryption with El Gamal:

REpk(c; r
′) = (α · gr′ , β · yr′) = Epk(c; r + r′)

An input to the mixnet is the encryption of the plaintext under the joint public key:

c0,j = EPK(mj; rj)

79

Mix server Mi then reencrypts each ciphertext with fresh randomness:

ci,j = REPK(ci−1,j; ri,j)

The final output cl,j = (αl,j, βl,j) is then joint-decrypted by the mix servers, using straight-
forward El Gamal shared decryption.

Design Principle 2 (Reencryption Mixnet [134]) Mixnet inputs are encrypted using a
cryptosystem with reencryption, usually a homomorphic scheme like El Gamal. Each mix
server then shuffles and re-randomizes the ciphertexts by homomorphically multiplying by 1
(or adding 0 if the scheme is additively homomorphic). Decryption occurs after shuffling is
finished.

Variant with Partial Decryption. Park et al. also propose a slightly different mixnet,
where the reencryption and decryption phases are performed simultaneously, with each mix
server effectively performing partial decryption at each reencryption stage. The last mix
server then only needs to perform a normal El Gamal decryption using his single secret key.
In the original paper, this variant is actually presented as the primary protocol. However,
with the benefit of hindsight, we mention this partial decryption scheme second, since the
reencryption-then-decrypt scheme is a bit simpler to understand, and provides the basis for
many subsequent schemes. Consider the following notation:

PKi =
l∏

i′=i

pk i′ = g
Pl

i′=i xi′ = Yi

In other words, PKi = Yi is the joint public key for the sequence of mix servers starting
with Mi. Note that PK1 = PK, the joint public key for all mix servers, and that PKl = pk l,
since Ml is the last mix server. The inputs to the mixnet are the same, but the actions of
the mix server Mi are slightly different. When a ciphertext reaches mix server Mi, it is
expected to be of the form EPKi

(m; Ri) and it is denoted ci−1 = (αi−1, βi−1). Using its secret
key sk i = xi, the mix server can transform this ciphertext under PKi into a ciphertext under
PKi+1, which is the joint public key of the remaining mix servers (a combination of one fewer
public key). Consider this partial decryption operation as follows:

PartialDecsk i
(c) = (α, β · α−xi)

Note, in particular, how:

PartialDecsk i
(EPKi

(m)) = EPKi+1
(m)

Thus, mix server Mi performs the following actions on each ciphertext input:

ci,j = REPKi+1
(PartialDecsk i

(ci−1,j); ri,j)

80

Design Principle 3 (Reencryption-and-Decryption Mixnet [134]) Mixnet inputs are
encrypted using a cryptosystem with reencryption, usually a homomorphic scheme like El
Gamal. The mixnet public key is jointly generated by the mix servers, each of which pos-
sesses a share of the secret key. Each mix server then shuffles, reencrypts, and partially
decrypts the ciphertexts. The last mix server’s outputs are the mixnet’s plaintext outputs.

Breaking the First Reencryption Mixnet. A year after these first reencryption-based
mixnets were published, Pfitzmann [136] showed significant breaks against both.

First, note how El Gamal used over all of Z∗
p is not semantically secure: by testing the

respective subgroup memberships of α = gr and β = m · yr, one can infer information about
the subgroup membership of m. Even a passive adversary that doesn’t choose any plaintext
inputs to the mixnet can observe algebraic relationships and significantly pare down the
possible inputs of a given output. We call this attack the semantic security attack.

Attack 2 (Semantic Security [136]) In a reencryption-based mixnet, if the cryptosystem
is not semantically secure, an attacker can detect input/output relationships by comparing
the input ciphertexts and the last ciphertexts before decryption. Often, the comparison will be
algebraic, but any comparison that utilizes the lack of semantic security is a possible attack.

The countermeasure proposed by Pfitzmann is to generate p as a safe prime, where a
large prime q divides p − 1, g is selected as the generator of a q-order subgroup of Z∗

p, and
m ∈ 〈g〉. A few years later, this approach was formalized by Tsiounis and Yung [168], who
proved the semantic security of El Gamal under this construction.

Countermeasure 1 (Making El Gamal Semantically Secure [136, 168]) When used
in mixnets, El Gamal should be properly parameterized for semantic security: all plaintexts
and ciphertexts should be in the q-order subgroup of Z∗

p, where p is selected such that q, a
large prime, divides p − 1.

Second, even with the semantic security countermeasure in place, an active attacker can
submit an input algebraically related to another input, using the homomorphic properties
of El Gamal. This is a variant of Pfitzmann’s earlier related-input attack (Attack #1). In
this variant, Eve uses input c∗ = (αe, βe) for a randomly chosen e where (α, β) is an existing
input to the mixnet. Then, one can check which pairs of plaintext outputs (m0, m1) fits
the relation me

0 = m1. Similarly, one could use c∗ = (α · gr∗ , m∗ · β · yr∗), then check for
m0 = m∗ · m1. Note that Pfitzmann describes this attack carried out by a small number of
dishonest mix servers against the remaining majority of mix servers. However, it seems that,
in a realistic setting where not all participants post their message on the bulletin board at
the same time, a malicious participant could perform this attack on his own.

As a countermeasure to this active attack, Pfitzmann suggests using techniques developed
around the same time for making El Gamal ciphertexts secure against chosen ciphertext
attack [47, 140]. Pfitzmann also suggests using redundancy in the plaintexts, though she
notes that, if the last mix server is corrupt, it can simply replace the malicious plaintext
with a “corrected” one, so that no observer notices the difference.

81

Countermeasure 2 (Non-Malleability) Inputs to a mixnet are made non-malleable, so
that Eve cannot take Alice’s input and convert it into a related input of her own. This coun-
termeasure may include message redundancy or techniques for chosen-ciphertext security.

3.4 Universally Verifiable Mixnets

The Pfitzmann attacks provided significant motivation to move beyond ad-hoc design for
mixnet protocols. In the mid 1990s, new mixnets began to exhibit a property called universal
verifiability, as first defined by Sako and Kilian [151]. Security definitions were introduced
in an attempt to capture the properties desired from mixnets. In the process, the efficiency
of mixnets took a significant hit, as the proofs of correctness were particularly onerous.

3.4.1 Introduction of Universal Verifiability

In 1995, Sako and Kilian proposed the first universally verifiable mixnet [151] based on the
techniques of Park et al. [134]. Sako and Kilian’s work was the first mixnet to provide a proof
of correct mixing that any observer can verify. As a result, specific attention to individual
verifiability—tracing one’s own input—was no longer necessary.

This proposal begins with the partial-decryption-and-reencryption mixnet of Park et al.
(Design Principle 3), with the countermeasure suggested by Pfitzmann (Countermeasure 1).
In addition to its existing tasks, each mix server Mi also publishes the intermediate results
PartialDecsk i

(ci,j), the partial decryption of each input prior to reencryption and shuffling.
Then, each mix server provides:

1. a proof of correct partial decryption
2. a proof of correct reencryption and shuffling

The proof of correct partial decryption is straight-forward: given c = (α, β), the partial
decryption PartialDec(c) = (α′, β′) effectively yields β/β′ = αxi where xi is the mix server’s
secret key. The mix server must then prove that (g, y, α, β/β′) forms a DDH tuple, meaning
that logg(y) = logα(β/β′) mod p. Kilian and Sako propose a simple 1-out-of-2, 3-round, cut-
and-choose protocol with soundness 50%, though one could also use the Chaum-Pedersen
algebraic proof [37] which provides overwhelming soundness. Sako and Kilian point out that
the individual proofs can be combined into one, by having the verifier raise all αj and βj/β

′
j

to a random power ej, multiplying them all together and proving a equality of discrete log
on the respective αj and βjβ

′
j products.

Design Principle 4 (Batch Proof of Knowledge of Randomization Values) Proving
reencryption of a sequence of homomorphic ciphertexts can be batched: the verifier provides
a random vector of plaintexts; both prover and verifier compute the homomorphic combina-
tion of each ciphertext sequence with this vector challenge, and then proves knowledge of the
single randomization value between the first and second dot-product ciphertexts.

82

The proof of shuffling is then a fairly typical zero-knowledge proof. Consider π and (rj)
the permutation and randomization values used by a given mix server. The mix server then
generates another permutation λ and list of randomization values (tj), and performs the
reencryption and shuffling according to these new parameters, generating what we call the
“secondary shuffle outputs.” The verifier can then challenge the mix server to reveal either
(λ, (tj)), which proves that this second mixing was done correctly, or (λ◦π−1, (rj−tj)), which
lets the verifier check how the primary shuffle outputs can be obtained by permuting and
reencrypting the secondary shuffle outputs. With 50% soundness, this is an honest-verifier
zero-knowledge proof of correct shuffling: interaction transcripts are clearly simulatable.

Design Principle 5 (Proof of Shuffle by Secondary Shuffle) A prover generates a sec-
ondary shuffle of the inputs, with independent permutation and randomization values. Based
on the verifier’s one-bit challenge, the prover reveals either the witness for this secondary
shuffle, or the “difference” between the primary and secondary shuffles: the relative permu-
tation and randomization values.

Mi

ci,1

ci,2

ci,N

.

.

.
.
.
.

.

.

.

c
′

i,2

c
′

i,1

c
′
i,N

ci−1,1

ci−1,2

ci−1,N

challenge = 0

challenge = 1

c
′

i,π′
(j) = RE(ci−1,j , r

′

j)

reveal π′
, {r′

j
}

reveal φ, {r′′
j
}

ci,φ(j) = RE(c
′

i,j , r
′′

j)

Figure 3-2: Sako-Kilian Zero-Knowledge Proof of Shuffle. This diagram represents the shuffle
phase of the Sako-Kilian proof, after the partial decryption.

83

Sako and Kilian suggest using Gennaro’s techniques for independent broadcast [72] to
defeat the related-input attack (Attack 1). This technique requires posters to provide a non-
interactive zero-knowledge proof of the plaintext of their posted ciphertext at the beginning
of the mixnet.

Countermeasure 3 (Proof of Knowledge of Plaintext) Each sender provides a non-
interactive proof of knowledge of her plaintext message along with her encrypted input.

Possible Problems. Michels and Horster [118] point out that, if only one mix server is
honest, the privacy of all inputs can be compromised. This runs counter to the security
model put forth—that if at least one mix server is honest, then privacy is protected.

The attack succeeds because mix servers publish the partially decrypted and unshuffled
ciphertexts. Assuming exactly one honest mix server, the l − 1 remaining corrupt mix
servers can simply decrypt the partially decrypted ciphertexts. They know the remaining
permutation, of course, since they are all colluding, and the single permutation they don’t
know is unnecessary for the attack, since it hasn’t yet been applied.

Attack 3 (Michels-Horster Partial Knowledge Privacy Attack) Using partial knowl-
edge revealed in the normal mixing process by an honest mix server, corrupt mix servers may
be able to cancel out the mixing actions of the lone honest mix server.

Note that one apparently unpublished countermeasure to this scheme is to simply reverse
the mix server’s actions: first shuffle and reencrypt, then partially decrypt. Then, if one mix
server is honest, the other mix servers can still certainly decrypt the outputs of the honest
mix server, but they do not know the permutation contributed by this honest mix server
and are thus unable to link the plaintexts to their original senders.

3.4.2 Fault tolerance

In 1997, Ogata et al. suggested two related schemes to provide fault-tolerance: if some of
the mix servers abort or misbehave (no more than half), they can be excluded from the
anonymization process dynamically, so that the mixing can continue [127]. These protocols
use proof techniques similar to those of Sako and Kilian (Design Principle 5), with some
added secret-sharing tricks to enable fault tolerance.

Secret-Sharing the Inputs. In their first proposal, Ogata et al. suggest use a a reencrypt-
and -decrypt mixnet (Design Principle 3), using the additive-homomorphic cryptosystem of
Benaloh et al. [43, 19]. Instead of single ciphertext inputs, senders are expected to submit
encrypted shares of their input, where each share is encrypted with a different mix server’s
public key. Secret-sharing is performed using a Shamir polynomial k-out-of-l scheme [159],
and Benaloh et al.’s homomorphic secret sharing variant is used for reencryption: a 0-valued
polynomial is homomorphically added into each input.

84

Each mix server thus shuffles and reencrypts the sets of shares. The shuffle proof is
based on Design Principle 5: the mix server generates a secondary mixing of the inputs,
then reveals, depending on the verifier’s challenge bit, either the entire secondary shuffle or
the difference between the primary and secondary shuffles. Decryption is then performed by
having each mix server publish the decryption of its designated share within each mixnet
output. Only k out of the l shares in each output are required to obtain a full decryption.

Design Principle 6 (Fault Tolerance by Secret-Shared Inputs) Using an appropri-
ate secret sharing scheme and homomorphic cryptosystem, mixnet inputs can be secret-shared
such that reencryption is possible by homomorphic combination with a secret-shared identity
element. Threshold decryption is thus achieved: a quorum of decryption servers recovers
enough shares to produce the fully decrypted outputs.

Secret-Sharing the Decryption Server Keys. Ogata et al.’s second protocol builds
on the reencryption-then-decrypt protocol of Park et al. with El Gamal encryption (Design
Principle 2). To achieve fault tolerance, each decryption server distributes shares of its secret
key to the other decryption servers before mixing begins. At the end of the shuffling stage,
if any server refuses to properly decrypt, the others collaborate to decrypt the outputs in
its place. It is clear that this principle could apply just as well to the original Sako-Kilian
proposal [151].

Design Principle 7 (Fault Tolerance by Secret-Shared Decryption Server Keys)
In a reencryption mixnet, decryption server keys are secret-shared among the decryption
servers. If some decryption servers refuse to cooperate in decryption, a quorum of remaining
honest decryption servers can recover this server’s secret key and perform decryption in its
place.

Foiling relation attacks. Ogata et al. propose having senders give a zero-knowledge
proof of knowledge of their plaintext at mixnet input submission time, which we already
saw as Countermeasure 3. In addition, in the reencryption-mixnet protocol, each decryption
server proves, in zero-knowledge, that it correctly proved its share of the decryption work.
Though the precise scheme isn’t mentioned, a straight-forward Chaum-Pedersen proof is a
good candidate. These measures counter the related-input attacks (Attack 1) by ensuring
that no inputs can be based on other inputs unless the other input’s plaintext is already
known by the adversary.

Countermeasure 4 (ZK PoK of Decryption Key) Decryption servers provide a zero-
knowledge proof of correct decryption, likely via a Chaum-Pedersen proof of correct DDH
tuple.

85

3.4.3 Verification independent of number of mix servers

In 1998, Abe [1] proposed an extension of Sako and Kilian’s mixnet proof system (Design
Principle 5) to reduce the amount of work required of the verifier and make it independent
of the number of mix servers. To achieve this result, the provers perform some additional
work to provide a “joint proof” of their actions, which the verifier can check as if it had
been generated by a single mix server. As a result of this construction, this new design is
not easily made fault-tolerant.

Each mix server Mi holds a k-out-of-l share xi of an El Gamal secret key x, in a proper
El Gamal setting as per countermeasure 1. All inputs c0,j are provided with zero-knowledge
proofs of knowledge of their plaintext, as per countermeasure 3. Rerandomization and shuf-
fling is performed using El Gamal reencryption, using Design Principle 2. Abe’s key contri-
bution is to chain all server proofs so that the verifier need only check the output of the last
mix server.

Proving Shuffling. To prove the reencryption and shuffling step, the mix servers perform
a secondary mixing (Design Principle 5). The variation in the Abe protocol is that each
secondary mix, rather than being based off the mix server’s input (which is the prior mix
server’s primary mix), is based on the previous mix server’s secondary mix. If the verifier
challenges this secondary mix, then all mix servers reveal their secondary randomization
values and permutations simultaneously, using a commitment scheme to enable this simul-
taneous reveal. If the verifier challenges the difference between the primary and secondary
mixes, the mix servers compute this different in sequence, each mix server revealing the
difference in turn. In either case, the verifier need only check a single output: the composed
secondary shuffle, or the difference between the composed primary and secondary shuffles.

Design Principle 8 (Chained Secondary Shuffle Proof) Each mix server, in turn, pro-
vides a secondary shuffle of the prior mix server’s secondary shuffle output. Depending on
the verifier’s challenge, the mix servers reveal either the mixnet-wide secondary shuffle or the
mixnet-wide difference between the primary and secondary shuffle. Either can be computed
sequentially by the mix servers, and the verifier only verifies a single secondary shuffle or a
single shuffle difference per challenge bit.

Proving Decryption. Decryption is performed using a slightly modified threshold El
Gamal decryption, where the share owners coordinate their actions to reduce the verifier’s
work. The mix servers within the quorum build up, in turn, the decryption factor for each
El Gamal mixnet output cl,j = (αj, βj). Specifically, M1 produces γj,1 = αx1L1

j , where
x1 is the private key share and L1 its Lagrange interpolation factor. M1 then produces
γj,2 = γj,1 ·αx2L2

j , and so on until the quorum of mix servers has effectively produced γj = αx,
which can be used to immediately decrypt cl,j.

Like the shuffle proof, the decryption proof can be verified in time independent of the
number of mix servers. The mix servers sequentially produce a joint Chaum-Pedersen proof

86

of correct DDH tuple for each mix server output: the servers sequentially and privately
contribute to the committed randomness for the first step of the proof and to the third step
of the proof, depending on a single verifier challenge. Note that the soundness of this proof
is overwhelmingly high without repetition. Figure 3-4 illustrates this process.

Design Principle 9 (Chained Generation of Decryption Factor) The decryption servers
cooperate to produce the joint decryption factor. They also produce a chained Chaum-
Pedersen proof of knowledge that this joint decryption factor was produced correctly.

3.4.4 Verifying Any Mixnet with RPC

In 2002, Jakobsson, Juels, and Rivest [96] introduced Randomized Partial Checking (RPC),
a generic mixnet proof system independent of the underlying cryptosystem or shuffling mech-
anism. This proof system is particularly interesting because of its simplicity: at a high level,
each mix server reveals a random half of its input/output correspondences. Thus, in the
context of voting, a mix server can corrupt v votes with probability 2−v: corrupting any
significant subset of the votes is highly likely to yield detection. Privacy is ensured either
probabilistically—the chance that an end-to-end input/output path is revealed can be made
quite low with a couple dozen mix servers—or by careful selection of audited correspondences.

More precisely, when mix server Mi provides outputs ci,j, it also provides commitments
to values (j, πi(j), ri,j) where ri,j is the randomization value that allows anyone to check that,
according to the underlying cryptosystem, input ci−1,j was sent to output ci,πi(j) (in short, it
is a rerandomization witness). Once this permutation and the mixing outputs are published,
the verifier issues the challenge set of inputs (or outputs), and Mi reveals the appropriate
commitments. The verifier can then check that mixing of these inputs (or outputs) was done
correctly ci−1,j, ci,πi(j), and ri,j.

When selecting the proper input (or output) challenges, one must consider the possibility
that a complete input-to-output path will be revealed, thus violating some privacy. This
issue can be resolved by pairing the mix servers consecutively, M1 and M2, M3 and M4,
etc . . . One then randomly selects a half-and-half partition of the values in the middle of
each pair, challenging the first mix server of each pair with the first set of the partition, and
the second mix server with the second set of the partition. Thus, one forcefully introduces
breaks in potential revelation paths. Assuming that fewer than half of the mix servers are
malicious, at least one such pair of mix servers is completely honest, thus guaranteeing the
privacy of every input.

Design Principle 10 (Randomized Partial Checking) The mix servers each reveal a
random half of their permutation according to a verifier challenge. Privacy is protected
either probabilistically—given enough mix servers, no complete path from start to finish is
revealed—or by careful selection of the revelations: mix servers are paired, and each pair
forces discontinuities in every revealed path. A slightly relaxed definition of soundness (a
small number of inputs can be incorrectly mixed) is achieved with overwhelming probability.

87

Slightly Weakened Soundness. RPC tolerates a mix server replacing x inputs with
probability 2−x. This is a slightly weaker version of soundness than that which we’ve con-
sidered for other mixnets. However, in the voting setting, this is clearly acceptable: any
discovered flaw would lead to significant investigation and prosecution, and the probability
of having a noticeable impact on the result without getting caught is extremely low.

Improving the Voting Setting. In the voting setting, each mix server is likely to be run
by some political party, and each voter is likely to trust only one of those parties (if even
that). It has since been noticed, by Chaum [40], that Randomized Partial Checking can
be made to accommodate this trust model: each political party runs two consecutive mix
servers, thus forming a pair all by itself. Thus, if any single party is honest, the privacy of
all votes is ensured.

3.5 Efficient Proofs

In the late 1990s, the literature turned to the goal of achieving efficient mixnet proofs, where
robustness and universal verifiability could be accomplished within practical running times
on tens of thousands of inputs. Rather than use generic zero-knowledge techniques, these new
proofs all made use of specific number theoretic assumptions of the underlying cryptosystem,
usually El Gamal. In particular, where prior proposals required repeating the entire proof
to achieve reasonable soundness, these new proposals provide overwhelming soundness in a
single run.

3.5.1 Mixing with permutation networks

In 1999, two independent papers concurrently proposed efficient universally verifiable mixnets
using permutation networks: Abe on the one hand [2], and Juels and Jakobsson on the other
[94]. Let us name Abe’s scheme Permix, and let us use Juels and Jakobsson’s name of Mil-
limix. These two papers share a number of techniques, with a handful of unique tweaks on
either side. Here, we describe the core ideas of both papers, and point out the interesting
unique aspects of each.

Permutation networks. A permutation network (also called a sorting network) is a cir-
cuit with N inputs and N outputs which can implement any N -permutation using, as its
building block, 2-by-2 sorters. With a recursive design and assuming, for simplicity’s sake,
that N is a power of 2, such a sorting network can be achieved using N log2 N sorters. Such
a network is shown in Figure 3-7. If one can build an efficient 2-by-2 cryptographic sorter
that hides whether or not it flipped its inputs, then such a construction can lead to a simple
and relatively efficient mixer for small input batches.

Design Principle 11 (Mixing with a Sorting Network) Inputs are passed through a
sorting network. Implementing a proof of 2-by-2 mixing is then sufficient to build a complete
mixnet.

88

Mixnet inputs. Both schemes require mixnet inputs to be semantically secure El Gamal
ciphertexts (Countermeasure 1), threshold-secret-shared and encrypted using the mix servers’
public keys with threshold k (Design Principle 6). Permix additional suggests that inputs
to the whole mixnet include a Schnorr signature [157] to ensure non-malleability (Counter-
measure 2). As usual, we denote the inputs to the mixnet as c0,j, and, more generally, the
inputs to mix server Mi as ci−1,j.

A cryptographic 2-by-2 sorter. Permix and Millimix implement the 2-by-2 sorter in
similar ways. Consider inputs c0 = E(m0) = (α0, β0) and c1 = E(m1) = (α1, β1), and
outputs c′0 = E(m′

0) = (α′
0, β

′
0) and c′1 = E(m′

1) = (α′
1, β

′
1). The mix server responsible for

this particular 2-by-2 sorter will compute the outputs as:

c′b = RE(c0, r0) = (α0 · gr0 , β0 · yr0)

c′̄b = RE(c1, r1) = (α1 · gr1 , β1 · yr1)

Depending on the choice of b, the mix server either passed the inputs straight to the outputs,
or flipped them. The reencryption and DDH assumption of El Gamal ensure that no observer
can tell b with better than random chance.

Both Permix and Millimix suggest proving correct operation of this 2-by-2 sorter using a
CDS disjunctive proof [44] of plaintext equality: either m0 = m′

0 and m1 = m′
1, or m1 = m′

0

and m0 = m′
1. The witness-hiding property of CDS ensures privacy. Millimix notes that

one can optimize this proof so that there is only one disjunctive proof and one normal proof
of plaintext equivalence: m0 = m′

0 or m0 = m′
1, and m0m1 = m′

0m
′
1. Given El Gamal’s

multiplicative homomorphism, the verifier can easily compute the encryption of the two
products m0m1 and m′

0m
′
1 without interaction.

The exact proof of plaintext equivalence differs between Permix and Millimix. Permix
suggests using the Chaum-Pedersen proof [37] of El Gamal plaintext equivalence. Millimix
notes the following trick, which transforms knowledge of a rerandomization value into a
Schnorr identification protocol:

• given two El Gamal ciphertexts c = (α, β) and c′ = RE(c′, γ) = (α′, β′),
• for a random z, denote G = gyz and Y = (α′/α)(β′/β)z,
• note how Y = Gγ,
• anyone who knows γ can perform a Schnorr signature using public key (G, Y).

This proof protocol for plaintext equivalence is more efficient than Chaum-Pedersen by about
50%.

Robustness. In both Permix and Millimix, robustness is ensured by Design Principle 6:
performing threshold decryption after mixing. Honest mix servers agree to perform their
share of the decryption only if all individual mix proofs are correct. Thus, with a properly
parameterized secret-sharing scheme, any level of robustness can be achieved.

89

Privacy. In Millimix, each mix server performs shuffling on an entire permutation network
of its own. Thus, there are l entire permutation networks, and, if at least one mix server
is honest, privacy is ensured. In Permix, the setup is slightly more complicated, but also
more flexible: assuming at most k adversarial mix servers, Permix uses k + 1 permutation
networks, assigning 2-by-2 sorter gates such that any given mix server Mi is assigned gates
from a single permutation network. Thus, by a counting argument, at least one permutation
network is handled by only honest mix server. When k is maximal, i.e. k = l−1, the Permix
architecture is the same as Millimix.

Reencrypt-and-Decrypt. Abe also suggests a reencrypt-and -decrypt version of his
permutation-network-based mixnet. Let us call it Decmix. In this scheme, k+1 permutation
networks are used, and every column j is assigned a simple additive share xj of the secret key
x. A single mix server controls one or more consecutive columns within a single permutation
network, thus having access to the corresponding xj. Each mix server performs partial
decryption and reencryption (Component 3).

To prove correct operation of a 2-by-2 sorter that reencrypts and partially decrypts, the
mix server responsible for that sorter’s column provides a disjunctive proof of knowledge of
the appropriate reencryption factors in the case of flip or non-flip.

Design Principle 12 (Privacy-Protecting Mix Server Set Assignments) Mix servers
can be carefully assigned to mixing sets so that, by a counting argument, there is always one
honest mix server per set, and always one set composed of entirely honest mix servers. Then,
if each such set fully mixes the inputs, correctness is ensured by the existence of the fully
honest set.

3.5.2 Matrix-based proof

Both Millimix and Permix provide better concrete proof speeds for small to medium batches
compared to the previous, generic cut-and-choose proofs. In 2001, Furukawa and Sako
introduced a proof more efficient than Millimix, Permix, and all prior schemes, both for
practical batch sizes and asymptotic measures [70]. This scheme frames the mixing process
as a matrix multiplication, then proves in zero knowledge that the matrix in question is a
permutation matrix.

As the protocol is fairly involved, we leave the details to the original paper, and provide
a general outline. Consider a single mix server Mi, with inputs (αj, βj) and outputs (α′

j, β
′
j).

Properties of a Permutation Matrix. Consider a m-by-n matrix Aij with elements in
Zq. Consider Pjj′ =

∑m
i=1 AijAij′ , effectively the dot product of columns j and j′. Consider

Pjj′j′′ =
∑m

i=1 AijAij′Aij′′ , effectively the “3-way” dot-product of columns j, j′, and j′′. Aij

is a permutation matrix if and only if:

• Property 1: Pjj′ = 1 if j = j′, and Pjj′ = 0 otherwise.
• Property 2: Pjj′j′′ = 1 if j = j′ = j′′, and Pjj′j′′ = 0 otherwise.

90

Proof Overview. The FS proof decomposes the actions of a reencrypting mix server as
follows:

(α′
j, β

′
j) = (grj

N−1∏
i=0

α
Aij

i , yrj

N−1∏
i=0

β
Aij

i) (3.1)

The Furukawa-Sako proof then contains four subproofs:

1. The matrix Aij that relates (αj) to (α′
j) has property 1, as defined above.

2. The matrix Aij that relates (αj) to (α′
j) has property 2, as defined above.

3. The lists of (rj) in the equations proven in the last two steps are the same.

4. For each output (α′
j, β

′
j), the same rj and matrix (Aij) were used in the first and second

half of the pair. This task is handled by the anonymous e-cash protocol of Brands [27].

Design Principle 13 (Proof of Matrix Multiplication by a Permutation Matrix)
Each mix server demonstrates knowledge of a matrix and randomization values that relate
the input ciphertexts to the output ciphertexts, proving in the process that this matrix is a
permutation matrix.

Performance. This scheme provides a proof in linear time on the number of inputs, specif-
ically requiring 18N exponentiations.

FS is a ZK Argument. One important note about the Furukawa-Sako protocol is that it
is a zero-knowledge argument, as soundness depends on the hardness of the discrete logarithm
assumption.

3.5.3 Exponent dot-product proof

At around the same time as Furukawa and Sako, Neff [124] introduced what remains to
this day the fastest, fully-private, universally verifiable mixnet shuffle proof, requiring 8N
exponentiations (not counting typical bulk modexp optimizations). Like the Furukawa-Sako
proof, the Neff proof is fairly complex. We leave the details to the original paper, and provide
a high-level outline here.

Neff decomposes the actions of mix server Mi in the following way, for input j and some
permutation π:

(α′
j, β

′
j) = (grπ(j)αj, y

sπ(j)βj)

Note that this equation can be satisfied for any set of outputs, including bad outputs. The
central idea of the Neff proof is that mixing correctness occurs when r = s. Once the inputs

91

and outputs of the mix server are fixed, given a random challenge vector t, r · t = s · t
implies that r = s with overwhelming probability. The Neff proof requires 3 protocols, each
of which is very briefly described here.

Equality of Exponent Products. Consider a vector of k elements (Ai), and another
vector (Bi), all elements of our usual q-order subgroup of Zp with chosen generator g.
Consider ai = logg Ai and bi = logg Bi. Neff defines an interactive, zero-knowledge proof,
EqualExponents, which:

• given public inputs (Ai) and (Bi),
• given private inputs (ai) and (bi),
• proves that

∏
ai =

∏
bi.

The details of EqualExponents can be found in the original paper.

Known-Exponent Shuffle. Consider a vector of k elements (Ti), and another vector
(Ui), all elements of our usual q-order subgroup of Zp with chosen generator g. Consider
ti = logg Ti and ui = logg Ui. Assume that γ ∈ Zq, Γ = gγ. Neff defines an interactive,
zero-knowledge proof, KnownExpShuffle, which:

• given public inputs (Ti), (Ui), Γ,
• given private inputs (ti), (ui), γ and a permutation π,
• proves that Ui = T γ

π(i).

Given a challenge w ∈ Zq from the verifier, the protocol calls EqualExponents on:

• 2k public inputs
(T1g

w, T2g
w, . . . , Tkg

w, Γ, . . . , Γ) and (U1Γ
w, U2Γ

w, . . . , UkΓ
w, g, . . . , g).

• 2k private inputs
(t1 + w, t2 + w, . . . , tk + w, γ, . . . , γ) and (u1 + wγ, u2 + wγ, . . . , uk + wγ, 1, . . . , 1).

Recall that ui = γtπ(i). Thus the extra k elements in the proof, (Γ, . . . , Γ) and (g, . . . , g),
are added to balance out the γ exponent products in the products. The run of EqualExponents
effectively demonstrates that:

γk

k−1∏
i=0

(ti + w) =
k−1∏
i=0

(ui + wγ)

Moving the γk inside the product, we’re left with:

k−1∏
i=0

(tiγ + wγ) =
k−1∏
i=0

(ui + wγ)

This is effectively the evaluation of two polynomials at a random point w. If the evaluations
are equal, then, with overwhelming probability, the polynomials are equal, and there exists
a permutation π such that ui = γtπ(i).

92

El-Gamal Shuffle. The proof of shuffle in the Neff Scheme, EGShuffle, proceeds as follows
once the mix server has produced outputs (α′

j, β
′
j):

• Prover and Verifier engage in a protocol to generate a random vector (Tj) and a random
value Γ ∈ 〈g〉, such that Prover knows (tj = logg Tj), γ = logg Γ, and the permutation π
used in the actual shuffling. Together, Prover and Verifier compute (Uj = T γ

π(j)). Veri-

fier should not learn π, γ, or (uj), (tj). This portion of the proof uses KnownExpShuffle
as a subprotocol.

• Prover demonstrates knowledge of R =
∑N

j=1 rjtj such that:

logg

∏N
j=1(α

′
j)

uj∏N
j=1 α

tj
j

= logy

∏N
j=1 β′

j
uj∏N

j=1 β
tj
j

= Rγ

Assuming aj = logg αj, a
′
j = logg α′

j, bj = logy βj, b
′
j = logy β′

j, the proof shows that:

a′ · u − a · t = b′ · u − b · t
If this equation holds, then with overwhelming probability, a′

i = aπ(i) and b′i = bπ(i), and the
shuffling is correct.

Design Principle 14 (Proof Equality of Exponent Dot Product) A mix server com-
mits to a permutation and receives a random challenge vector. It then proves knowledge of
the single reencryption exponent between the dot product of the input exponents with this
random vector and the dot product of the output exponents with the permuted random vector.
The key point is that the single reencryption exponent is the same for both halves of the El
Gamal ciphertexts.

Performance and Soundness. This scheme requires 8N exponentiations. It remains, to
this day, the fastest proof of a shuffle with overwhelming soundness, even with a computationally-
unbounded prover.

Generalization to any homomorphic commitment scheme. Groth [87] generalized
Neff’s scheme to any homomorphic commitment scheme and homomorphic cryptosystem.
He also provided a more complete proof of correctness.

3.6 Proofs by Aggregate Properties

In the development of mixnet schemes, some variants appeared which were eventually shown
to be flawed. It is, of course, important to keep track of these attempts, so that we may
strive to understand why they were thought to work for a short while. It is also important
to consider the techniques proposed, as they may be useful in their own right in other

93

applications, or in slightly weaker security definitions for mixnets. Finally, the attacks against
these schemes also yielded interesting new constructions.

In this section, we consider a number of attempts which rely on proving properties of
homomorphic aggregations of the inputs and outputs. We provide only a high-level overview
and refer the reader to the individual papers for the details, as some of these protocols are
quite involved. However, we do provide an intuition for what went wrong and for how the
protocols were fixed (if they were). In particular, we point out that, when proving properties
on the aggregation of the inputs and outputs, mix servers are not proving knowledge of an
actual permutation. It is this “missing piece” which is often at the root of the problem.

3.6.1 A Practical Mix

In 1998, Jakobsson [92] proposed “a practical mix” based on repetition robustness. As
its name implies, repetition robustness proposes to achieve robust results by repeating the
mixing process a number of times. If the results are the same across the various repetitions,
then it is overwhelmingly likely that no mix server cheated. If an inconsistency is detected,
a tracing process ensues to pinpoint the guilty mix server. It is important to note that this
mixnet is not universally verifiable, as a coalition of all mix servers can corrupt the entire
election. However, it is an interesting technique in its own right.

Overview. At a high level, the mixing is performed in three major steps: provable dis-
tributed homomorphic blinding, threshold decryption, and distributed unblinding-and-shuffling.
The mix servers cooperate to jointly blind the plaintexts “through” the encryption layer.
Consider specifically the El Gamal setting, where a ciphertext:

c = (α, β) = (gr, myr)

is blinded using exponent δ:

(αδ, βδ) = (grδ, mδyrδ) = E(mδ; rδ).

Then, the mix servers can safely decrypt the resulting ciphertexts without shuffling, since
the outputs will be blinded. Finally, in the most involved part of the process, the mix servers
cooperate to jointly unblind the resulting plaintexts while shuffling them. This last phase
employs repetition robustness to ensure that all mix servers are acting “correctly.” The final
portion of this last step requires the mix server to prove correct exponentiation and shuffling
by proving, in zero-knowledge, that the product of the outputs is simply the product of the
inputs raised to the appropriate unblinding exponent.

A First Flaw. One notable flaw of this mixnet, noted by Jakobsson himself in a subsequent
paper [93], is that the mix servers see the un-shuffled blinded plaintext messages. In this
setting, two identical messages appear identical when blinded. In an election, if the mix
servers know some of the plaintext votes, they are then able to correlate the value of many
others. One possible countermeasure here is to pad individual votes to make them unique.

94

3.6.2 Breaking and Fixing a Practical Mix.

The Attack. In 2000, Desmedt and Kurosawa [55] showed how to break Jakobsson’s
scheme. Because verification requires only a check on the input and output products, a
malicious mix server can cheat the system by producing, instead of the honestly blinded and
shuffled inputs, a different set of outputs whose product is the same as the product of the
would-be honest outputs. Desmedt and Kurosawa show, by way of example, how the last mix
server in particular can completely corrupt the set of outputs while passing all verification
tests, using as a basis the original, non-anonymized inputs to the first mix server.

Attack 4 (Mixing Cancellation Attack) When mix servers prove knowledge of some ag-
gregate property instead of the actual permutation, it may be possible for one mix server to
“cancel” the effects of the mixing by prior mix servers, by processing as its input an earlier
batch and adjusting one of its output to match the desired aggregate. For example, the last
mix server can break the privacy of the entire mixing by using, as its input batch, the original
mixnet inputs.

Fixing Repetition Robustness. To patch this attack, Desmedt and Kurosawa intro-
duced a new method of verification. Though this method is not universally verifiable, it is
quite interesting in that it is the precursor to Wikström universal composability proof (see
Section 3.8). Given l mix servers, the protocol tolerates strictly fewer than

√
l corrupt mix

servers.
The mix servers are partitioned into blocks of size

√
l, of which there are

√
l. Given

the assumption that the are fewer than
√

l corrupt mix servers, each block has at least one
honest mix server, and at least one block is composed entirely of honest participants. Each
block designates a “shuffler” who performs El Gamal reencryption and shuffling (Design
Principle 2). This shuffler privately sends his permutation and randomization values to the
other members of the block. Any verifier mix server can pinpoint an error if one occurs. If
any errors are declared against a block, then its output is ignored. Since there is at least
one block with entirely honest mix servers, at least one block will provide an output without
error. This output can then be threshold-decrypted appropriately.

Design Principle 15 (Existential Honesty) The mix servers are partitioned into blocks
to ensure that at least one block is fully honest and no block is fully corrupt. The output of
a block is then correct only if it is fully honest. An un-challenged block output can then be
threshold-decrypted.

3.6.3 Flash Mixing

Shortly after “A Practical Mix,” Jakobsson proposed Flash Mixing [93], which, though pub-
lished a year before Desmedt and Kurosawa’s mixing cancellation attack (Attack 4), was
resistant to it. Like Jakobsson’s previous mix, Flash mixing relies on repetition robustness,

95

proving aggregate properties of input/output relationships with repetitions to ensure that
deviations will be caught.

The protocol proceeds as follows:

• Two dummies are introduced into the input list, such that no mix server knows the
plaintexts of these dummies.

• The resulting list of mixnet inputs, which are El Gamal ciphertexts in the style of
Park et al. (Design Principle 2), is copied a number of times, precisely for repetition
purposes.

• The mix servers in turn shuffle and reencrypt each of these lists, producing a first
shuffle, for the purpose of hiding the position of the dummies.

• The mix servers then produce a second shuffle starting with the output of the first
shuffle with independent randomization values and permutations. Note that, at this
point, they do not know where the dummies are.

• The mix servers then reveal all of their secret data pertaining to the first shuffle, thereby
revealing where the dummies ended up before the second shuffle began.

• The mix servers in turn then proceed to prove the second shuffle:

– reveal the permutation of the two dummies, including the randomization value
for the first dummy, but only a zero-knowledge proof of knowledge of the ran-
domization value for the second dummy.

– prove in zero-knowledge that the homomorphic product of the inputs equals the
homomorphic product of the outputs.

– reveal the difference between the permutations and randomization values of the
mix server’s first output list and the other copies of the list. This can be done by
a mix server only once it knows the relative differences for the prior mix server.

The purpose of the list repetition is to force a cheating mix server to somehow guess the
relative permutations of its inputs in order to successfully modify a subset of them. The
dummies are meant to ensure that any mischievous modification to the ciphertexts by a mix
server must somehow manage to correctly guess the relative positions of the two dummies
in all repeated lists.

Breaking and Fixing Flash Mixing. The Desmedt-Kurosawa attack on A Practical
Mix does not work against Flash Mixing as is, because the dummy values prevent the last
mix server from simply taking the first mix server’s input directly. However, Mitomo and
Kurosawa [119] describe a related attack that does succeed against Flash Mixing.

The key idea of this attack is to cancel out the hiding of the dummy values from the first
reencryption. Assume the first server is malicious. It performs the first shuffle of all lists

96

correctly. However, in the second shuffle, it produces N corrupt outputs and the two dummies
reencrypted from their initial input positions before the first shuffle, N + 1 and N + 2. The
corrupt N outputs are computed such that their homomorphic product is the homomorphic
product of the second shuffle inputs, homomorphically divided by the two dummies from
the very beginning. Then, once the first shuffle randomization values and permutations are
revealed in the verification of the first shuffle, the first mix server knows how to prove the
aggregate randomization value for the input and outputs products, the randomization values
for the dummy values, and the relative permutations and randomization values. This attack
works because the actions of the first shuffle can be effectively negated, since all of the raw
witnesses are revealed before the second shuffle proofs begin.

Attack 5 (Dummy Shuffle Cancelation) An attacker can cancel the effect of the first
reencryption shuffle in Flash Mixing by producing its second reencryption output based on
aggregating the mixnet’s pre-shuffle inputs, rather than the output of the first reencryption.
The effect of the dummy values is negated because their positions before the first shuffle are
known to all.

Mitomo and Kurosawa propose a quick countermeasure to their own attack. They ac-
complish this by adding a number of zero-knowledge proofs rather than simply revealing
raw randomization values. As expected, this change makes the protocol significantly less
efficient, which negates the biggest advantage of Jakobsson’s original approach.

Countermeasure 5 (Dummy Shuffle Cancellation Countermeasure) One should trace
the dummy values through the first shuffle using zero-knowledge proofs of knowledge, and ver-
ifying the products in the second reencryption, all before the first shuffle reencryption values
are revealed. This technique forces mix servers to prove knowledge of the reencryption factors
for the dummy values without knowing the reencryption values for the first shuffle, there by
defeating the cancellation attack.

3.6.4 Optimistic Mixing

In 2002, Golle et al. [84] proposed a new type of universally verifiable mixnet they called
“Optimistic Mixing,” with a significantly faster proof when all players behave honestly, and
a fallback to existing proofs like Neff’s when an error is detected. “Optimistic Mixing” uses
El Gamal reencryption, properly parameterized as per Countermeasure 1.

In order to check correctness before the plaintexts are fully revealed, two layers of en-
cryption are used: first the message is encrypted in the usual manner:

c = E(m; r) = (α, β) = (gr, myr)

Then, c is cryptographically hashed, and all components are encrypted in a second layer:

d = (d1, d2, d3) =
(
E(α; r′), E(β; s′); E(H(α, β); t′)

)

97

Every message submitted as input to the mixnet comes with a proof of knowledge of
(α, β, H(α, β)). The mix servers then reencrypt and shuffle these triples of ciphertexts in
the usual manner. Upon completion, a threshold decryption yields (α′, β′, γ′), and everyone
checks that γ′ = H(α′, β′) for all messages. In addition, using the homomorphic multipli-
cation propery of El Gamal, each mix server proves correct reencryption of corresponding
input and output products : the α’s, β’s, and cryptographic hashes. If this proof succeeds,
the mix servers agree to decrypt the inner layer, thereby recovering the plaintexts.

The idea of this construction is that the cryptographic checksum should prevent a mali-
cious mix server from successfully altering the outputs without also altering the products.

3.6.5 Wikström Attacks

In 2003, Wikström [178] presented 5 serious attacks, some against Optimistic Mixing, and
some against Flash Mixing . These attacks are a compilation of various prior techniques
along with some novel ideas. Taken together, these attacks deliver a significant blow to the
optimized techniques of repetition robustness and double-enveloping.

Correlation Attacks. In the spirit of the related-input attack (Attack 1), Wikström
notes that optimistic mixing requires proofs of knowledge of the (α, β, H(α, β)) one-layer-
deep values only, not of the two-layer-deep plaintext m. In addition, the same cryptosystem
and public key are used for both layers. As a result, an attacker Eve can roughly take the
encrypted mixnet input of an honest user Alice, wrap it in an additional layer of encryption,
and provide this as an input to the mixnet with a valid proof of knowledge. The normal
mixnet process will decrypt this triple-encrypted message twice, thus revealing the single-
encryption of Alice’s input, which should never be correlated with Alice’s identity. Yet Eve
can match this against the single-layer ciphertexts on the bulletin board, and follow the
second threshold decryption to discover what Alice’s plaintext input was.

Attack 6 (Related Inputs on Double Envelopes with Extra Wrapping) If inputs are
double-enveloped ciphertexts with only a partial proof—i.e. a proof of the inner layer only—
related inputs, complete with the requisite proofs, can be constructed by adding an extra
wrapping around an existing double-wrapped input.

If two different keys are used for the inner and outer encryption layers, there remains an
attack if the cryptographic keys aren’t renewed from one mix to another and if the first mix
server is malicious. In a first instance of the mix, the first mix server corrupts two honest
inputs by swapping parts of the two ciphertexts. The product proofs remain valid, though
the hash check fails, causing a tracing procedure which effectively reveals to everyone what
the inner ciphertexts were for Alice and Bob, the two targeted users. The malicious mix
server is found and eliminated, but can return as a submitter in a second mixing instance,
where he submits outer-encrypted versions of inner encryptions of Alice and Bob found in the
previous round. This is now another correlation attack on Alice and Bob: when the messages
are fully decrypted, the mix server learns the original plaintexts submitted by Alice and Bob
in the first mix.

98

Attack 7 (Related Inputs on Double Envelopes with Tracing-Based Unwrapping)
When a tracing procedure reveals the inner-ciphertext of a double-enveloped mixnet input, an
adversary can force a trace in a first mixnet instance, then reuse this inner ciphertext to
create a related input in a second mixnet instance.

Mixing Cancellation Attack. Wikström offers two additional attacks, where one or
more malicious mix servers cancel the effects of mixing. Like in the original, these attacks
are possible because each mix server only proves plaintext product equality between its
inputs and outputs, rather than knowledge of the specific permutation.

In the first such attack, exactly in the spirit of Desmedt and Kurosawa’s attack (Attack
4), the last mix server is corrupt. Instead of rerandomizing and shuffling its input, it shuffles
and rerandomizes the first mix server’s inputs, which are identified by sender on the bulletin
board. By tweaking one output to cancel out all of the randomization values accumulated
throughout the mixing, the malicious mix server succeeds at its proof. The outputs are then
decrypted normally, and the attack only affects the outer layer of reencryption. The last mix
server then can correlate any output with its sender, since the only effective shuffling is the
one it applied itself.

The second mixing cancellation is a variant of Pfitzmann’s original semantic security
attack (Attack 2). The first and last mix server are corrupt. Together, they wish to discover
Alice’s plaintext message. The two mix servers agree on a “tag” value t that is not in the
El Gamal q-order subgroup. The first mix server multiplies Alice’s input by t, and another
input by t−1 to ensure product equality. The last mix server then tests all of its inputs for
the subgroup “tag,” removes the tag and its counterpart, and publishes its outputs, knowing
exactly where the tagged input ended up. Upon decryption the malicious mix servers learn
Alice’s plaintext. This attack succeeds because only the first batch of inputs is checked
for proper semantic security constraints and only aggregate integrity conditions are checked
between inputs and outputs.

Attack 8 (Semantic Security of Intermediate Ciphertexts) When mix servers only
provide proofs of aggregate properties on their ciphertexts, the properties checked on the
first batch of inputs may not be automatically preserved throughout the various shuffles. If
the starting mix server can “tag” a ciphertext by moving away from the semantic security
constraints (and canceling out this deviation for the aggregate check), then the last mix server
can recognize this tag and effectively “ignore” the mixing performed in between.

Delayed Effect Attack. Wikström describes a final attack, where an adversary that
controls one mix server and two senders can change his mind on the effective plaintext of
the two senders after they have submitted their inputs. This can be used, for example in a
voting setting, to decide how one wishes to vote depending on an event that happens after
the close of voting but before the mixing begins. In certain settings, this can be problematic.

99

Wikström’s attack again relies on the fact that only an aggregate property of the inputs
and outputs is proven by mix servers, and that a trace of certain inputs can be considered
benign if the error comes from the sender rather than from a mix server. The adversarial
senders provide coordinate invalid inputs:

E(α0), E(aβ0), E(H(α0, β0)) and E(α1), E(a−1β1), E(H(α1, β1))

The first mix server can then choose to “correct” these inputs by homomorphically re-
moving the a and a−1, which doesn’t alter the products and thus lets the mix server prove the
shuffle even with this substitution. If it chooses not to correct the inputs, they will simply
be detected as benign mistakes caused by sender error. Thus, the adversary can delay his
decision as to whether the two inputs by these senders should count or not.

Attack 9 (Delayed Decision) If mix servers only prove aggregate properties, then an at-
tacker can provide incorrect inputs whose aggregate is the same as the aggregate if these inputs
were legitimate. The first mix server can then decide, after the close of input submission,
whether or not to rehabilitate these inputs.

3.7 Variants

When working with real-world problems that require mixnets, a number of practical con-
straints need to be addressed. Beyond the theoretical proof of correctness, a number of
techniques have been introduced to address these constraints.

3.7.1 Hybrid Mixnets

When using a public-key cryptosystem like El Gamal, one limitation is that each ciphertext
input to the mixnet can only be as big as the plaintext space of the El-Gamal public key
allows, usually a few hundred bits or, in the case of elliptic-curve based El-Gamal, no more
than 300 bits. This plaintext space can become quickly insufficient, and one immediate idea
is to employ a hybrid encryption scheme that combines the asymmetric nature of public-key
cryptography and the length flexibility of symmetric encryption. Two interesting schemes
exist in this category, though neither is universally verifiable. In fact, there are no known
efficient universally verifiable hybrid mixnets, although one could well imagine adapting RPC
to these hybrid mixnets.

Length-Invariant Hybrid Mix. In 2000, Ohkubo and Abe [128] introduced the first
robust hybrid mixnet. They prove the security of their construction in the Random Oracle
Model under the Decisional Diffie Helman (DDH) assumption. They use a novel combination
of El Gamal encryption and symmetric encryption, with an ideal hash function mapping El-
Gamal group elements to symmetric keys.

The mix servers {Mi}i∈[1,l] select secrets ai, xi ∈ Z2
q, then compute and publish:

100

(hi, yi) = (g
Qi

j=1 aj , hxi
i)

The generation of these keys is sequential, starting with bootstrap value a0 = g. Mix
server Mi receives hi−1 from the prior mix server Mi−1, computes hi = hai

i−1, then yi = hxi
i .

Effectively, each mix server Mi publishes an El Gamal public key yi with generator hi, with
hi dependent on the previous mix server’s key.

To send a message into the mixnet, a sender generates r ∈ Zq and computes symmetric
keys Ki = H(yr

i) using each mix server’s public key yi. The plaintext m is then chain-
encrypted as m′ = EK1(EK2(. . . (m) . . .)), and the sender sends (α0, β0) = (gr, m′) to the
bulletin board. The mix servers then sequentially recover yr

i , extract Ki, and each unwrap
one layer of the symmetric encryption:

αi = αai
i−1 = hr

i

Ki = H(αxi
i) = H(yr

i)

βi = DKi
(βi−1)

Mix server Mi then publish the (αi, βi) values in random order.

Design Principle 16 (Chained Symmetric Key Scheduling) Mix servers publish chained
El Gamal public keys. Senders can use these chained public keys to schedule symmetric keys—
one for each mix server—using a hash function on a randomized encryption of 1 under that
mix server’s public key. The mix servers can sequentially recover their specific encryption of
1 through sequential partial decryption, yielding the appropriate secret key for decryption at
each step.

Ohkubo and Abe also suggest extensions to make their mixnet robust against malicious
senders and mix servers. First, using Countermeasure 2, they propose a Fiat-Shamir style
non-interactive zero-knowledge proof of knowledge of the randomization exponent r based on
(α0, β0). Then, they suggest using the method of Desmedt and Kurosawa (Design Principle
15) to partition the servers into

√
l groups of size

√
l. Assuming at most

√
l − 1 mix servers

are malicious, each group has at least one honest server, and one group must be entirely
honest. By distributing all keying material for a given server to all other members of the
server’s group, we ensure that any deviation is detected, since there is at least one honest
server per group, and we ensure that the shuffle permutation remains secret, because there
is at least one group with entirely honest servers who do not leak their shuffle permutation.

Optimally Robust Hybrid Mix. In 2001, Jakobsson and Juels [95] proposed a hybrid
mixnet with optimal robustness: up to half of the mix servers can be corrupt, rather than√

l in Ohkubo and Abe’s proposal. However, the length of the inputs is now linear in the
number of mix servers, rather than invariant.

Their proposal uses ideas similar to those of Ohkubo and Abe: each mix server chains an
El Gamal public key from the prior mix server, which enables a kind of “key scheduling” of

101

unique keys for each mix server using a single random exponent. In addition, Jakobsson and
Juels insert a MAC (message authentication code) within every layer of the symmetric key
wrapping. This additional MAC causes the length of the ciphertext to grow linearly with
the number of mix servers, while allowing a mix server to determine if the prior mix server
cheated. A mix server must also prove a product equality relationship between its inputs
and outputs, which is unlikely to be malleable given the MACs.

Design Principle 17 (Chained Symmetric Key Scheduling with MACs) Mix servers
and senders prepare the same chained setup with key scheduling as in Design Principle 16. In
addition, senders provide a MAC within each layer of symmetric encryption, using a MAC
key generated from a similar but independent chain-and-partial-decrypt operation. Each mix
server can thus verify that the prior mix server was honest, and can publish evidence to the
contrary if it wasn’t.

3.7.2 Universal Reencryption

In 2004, Golle et al. [82] proposed universal reencryption, a mixnet technique which does
not require that mix servers know the public key of the ciphertexts they are mixing. This
approach is useful in that it does not require the mix servers to be part of the key generation
process. Golle et al. mention that this may be useful in the case of anonymizing RFID
tags, where RFID tag values may be opportunistically reencrypted by various mix servers to
prevent tracking. Of course, this kind of mixnet only performs reencryption, not decryption.

The basic construction for universal reencryption is simply to have a ciphertext input
for plaintext m be a pair of El Gamal ciphertexts (Epk(m), Epk(1)). Using the homomorphic
property of El Gamal, it is then trivial to reencrypt this ciphertext. To do so, pick reen-
cryption exponents r, s ∈ Zq, and output (Epk(m) ⊗ Epk(1)r, Epk(1)s). Golle et al. consider
semantic security under reencryption to prove the security of this scheme, a property which,
in the case of El Gamal, follows from the DDH assumption.

Design Principle 18 (Universal Reencryption) Given a homomorphic cryptosystem, a
sender’s input is a pair of ciphertexts: the encryption of the identity, and the encryption
of the desired message. The mix server can use the encryption of the identity element to
reencrypt both ciphertexts.

3.7.3 Almost Entirely Correct Mixing

In 2002, Boneh and Golle [26] proposed a technique for rapidly proving almost correct
mixing of El Gamal reencryption mixnets. The proof implies correctness with high, but not
overwhelming probability, and it may leak some information about which inputs correspond
to which outputs. However, the proof is quite fast and the technique fairly interesting.

The basic idea is to challenge the mix server with a subset of the inputs, such that
each input is chosen with independent probability 1/2. The mix server must provide an

102

equally-sized subset of the outputs, then prove knowledge of the rerandomization value
between the homomorphic product of the chosen inputs and the homomorphic product of
the corresponding outputs. This test can be repeated α times. Boneh and Golle prove that,
if all challenges succeed, the mix server performed correctly with probability (1 − (5/8)α).

Though the protocol is intuitive, the proof is fairly involved. At a high level, Boneh and
Golle collect, via extraction, a number of input-set/output-set pairs from the prover, includ-
ing the randomization value. If the mix server isn’t mixing properly, then they eventually
find some non-trivial multiplicative identity on the input plaintexts. Boneh and Golle assume
randomly distributed plaintexts, and reduce solving the discrete logarithm problem to this
extraction by plugging in specially-crafted plaintexts, derived from a discrete-log challenge
pair (g, h).

Design Principle 19 (Repeated Verification of Homomorphic Aggregations) Using
the homomorphic property of the cryptosystem, a verifier can request aggregate permutation
information on a large subset of the inputs, where the prover only demonstrates knowledge
of the reencryption between the respective homomorphic aggregations of the selected inputs
and corresponding outputs.

3.7.4 Parallel Mixing

In 2004, Golle and Juels [83] introduced parallel mixing. Golle and Juels note that practically
all mixnet protocols require serialized mixing: one mix server mixes while all others wait.
Instead, they propose a scheme where the set of inputs is split into batches, so that all mix
servers can mix in parallel.

To provide enough “mixing,” each mix server shuffles its batch, then partitions and
redistributes the result to all other mix servers. To protect against malicious mix servers,
a number of rotations are added between redistributions: each mix server shuffles, then the
batches are each passed to another mix server in a circular order (without redistribution),
and shuffled again. The number of redistributions depends on the number of mix servers,
while the number of rotations depends on the number of assumed corrupt mix servers.

The details of the proof of security are provided in the original paper [83]. They argue
that this mixnet provides complete but dependent privacy, and, given enough inputs, almost
independent privacy.

Design Principle 20 (Parallel Mixing) Mix servers shuffle in parallel rather than in se-
ries. Repeating shuffling ensures privacy: rounds of redistribution ensure a good enough mix,
while rounds of rotation ensure privacy against corrupt mix servers.

3.8 Universally Composable Mixnets

A mixnet is almost always a component of a larger, more complicated protocol, e.g. voting.
As attacks over the years have shown, it is common to see a mixnet proven secure in a

103

particular setting, only to find that it breaks down in a slightly different setting, e.g. if the
mixnet is run twice with the same public key. The question, like for many other complex
protocols, is how to precisely determine what the true security properties of a mixnet should
be.

One approach to solving this problem generically is to prove security in the Universally
Composable framework of Canetti [32], which we reviewed in Chapter 2. In this framework,
a protocol proven secure can be composed with other secure protocols, even in parallel. In
addition, the UC framework forces a high-level analysis of the security properties we desire
from a mixnet.

3.8.1 A First Definition and Implementation

In 2004, Wikström [179] provided the first universally composable mixnet definition and
implementation. The details of this new protocol are not particularly efficient, but the
security proof is particularly interesting.

Defining the Ideal Functionality. Wikström gives FMN, an ideal functionality for a
mixnet. This functionality is particularly simple, relying on the UC baseline to guaran-
tee security: the senders submit their individual input to the ideal functionality. When a
majority of the mix servers choose to “mix,” the ideal functionality sorts the inputs lexico-
graphically and outputs the resulting list. As is typical in the UC setting, the ideal adversary
S can delay messages to the ideal functionality as it sees fit, though of course it cannot see
the communication with the ideal functionality.

Definition 3-1 (Ideal Mixnet) The ideal functionality for a mixnet, FMN, with senders
P1, . . . ,PN , mix-servers M1, . . . ,Ml, and ideal adversary S, proceeds as follows:

1. Initialize:

• JP = ∅, the set of senders who have sent a message to the ideal functionality,

• JM = ∅, the set of mix servers who have sent a message asking to start the mixing.

• L = ∅, a list of messages received from senders.

2. Repeatedly wait for messages:

• on message (Pj, Send, mj), if Pj �∈ JP and mj is properly formed (e.g. it is a
proper element in some pre-defined group), set L ← L∪{mj} and JP ← JP∪{Pj}.
Send (S,Pj, Send).

• on message (Mi, Run), if Mi �∈ JM, then set JM ← JM ∪ {Mi}.
If |JM| ≥ �l/2�, then prepare list L′ as the lexicographically sorted version of
L, and send {(Pj, Output, L

′)}j∈[1,N], {(Mi, Output, L
′)}i∈[1,l]. Stop responding

messages.

Otherwise, send (S,Mi, Run).

104

Wikström also gives UC definitions for an ideal bulletin board and an ideal distributed
El Gamal key generation, suggesting implementations of the former by Lindell, Lysyanskaya
and Rabin [110] and of the latter by Gennaro et al. [74]. We leave the details of these
additional components to their respective publications and to Wikström’s paper.

Wikström uses Canetti’s UC definitions [32] for generic definitions of zero-knowledge
proofs of knowledge of a relation, in this case zero-knowledge proofs of knowledge of in-
put plaintexts and a zero-knowledge proof of knowledge of the randomization values and
permutation. For both of these modules, Wikström provides implementations.

Implementation Techniques. Wikström’s mixnet uses the El Gamal cryptosystem. The
zero-knowledge proof of knowledge of plaintext used by senders uses a modified version of
Feldman’s verifiable secret sharing [64], where senders secret-share their witness to all mix
servers by encrypting each share with the target mix server’s public key and posting the
result on the authenticated bulletin board. Each mix server decrypts and verifies his share
and posts the result of this verification to the bulletin board for all to see.

For the proof of proper shuffle, Wikström proposes a variant of the Desmedt and Kuro-
sawa scheme (Design Principle 15). The l mix servers are partitioned into sets, such that any
given set has at least one honest mix server and at least one set is entirely honest. Mix servers
then perform a number of reencryptions and shuffles, posting the witnesses on the bulletin
board encrypted under a subset of the other mix servers’ public keys. In contrast with the
original Desmedt-Kurosawa proof, Wikström proof requires that this process be repeated a
certain number of times, each time with a different partition of the verifiers. This prevents
malicious verifiers from conducting a denial-of-service attack, and ensures extractability for
the UC ideal adversary.

3.8.2 Sender-Verifiable Mixnet

In 2005, Wikström [180] proposed a slightly different approach to mixnet verification, sender
verifiability, where a sender can verify that her input is correctly making its way through the
mix servers. This new protocol significantly reduces the size of the per-mix-server witness
and introduces a novel technique for proving a correct shuffle, provable in the UC framework.
Here, we review the sender-verifiable technique and give a brief overview of the proof con-
cepts. We leave the details of the proof protocol to the original paper [180], as they require
much technical subtlety. As the author notes, sender verifiability may be problematic when
dealing with coercion in a voting setting. However, even if one is willing to do away with
sender verifiability, Wikström techniques remain quite interesting, given the short mix server
witness and the complete determinism of the shuffling operation.

The Need for Reencryption? Wikström notes that El Gamal mixnets typically use
reencryption because, when a plaintext is encrypted with El Gamal into ciphertext (α, β)
with joint public key Y =

∏l
i=1 yi, partial decryption yields (α, α−xiβ), with the α value

unchanged. Clearly, if this were the only alteration between input and output ciphertexts,

105

the permutation would leak by simple comparison of the input and output α values. Thus,
in Park et al.’s original paper on reencryption mixes, one proposal is to partially decrypt
and reencrypt at the same time. This then leads to the realization that the mix servers can
focus on the reencryption in order to simplify the proofs, leaving the shared decryption as a
subsequent step.

Indistinguishable Partial Decryption. Instead, Wikström proposes a variant of El
Gamal where partial decryption yields an indistinguishable ciphertext under the DDH as-
sumption. Each public key share pk i defines an additional generator hi, with the secret key
sk i augmented to include the discrete logarithm of hi base g.

Thus, a secret key in Wiström-El-Gamal is sk = (w, x) ∈ Z2
q, and the corresponding

public key is pk = (h = gw, y = gx). Encryption is then:

Epk(m; r) = (α, β) = (hr, myr)

and decryption is

Dsk(α, β) = α−x/wβ

Most interestingly, consider a joint public key formed recursively, with each server se-
quentially injecting its public key into the joint key:

PKl+1 = (Hl+1, Yl+1) = (g, 1)

PKi = (Hi, Yi) = (Hwi
i+1, Yi+1H

xi
i+1)

Thus, a message is encrypted under the joint public key produced by the first mix server
M1 after all other mix servers have injected their contribution:

c0 = EPK1(m; r) = (α0, β0) = (Hr
1 , mY r

1)

Server i can then partially decrypt as follows:

ci = (αi, βi) = Dsk i
(αi−1, βi−1)

def
= (α

1/wi

i−1 , α
−xi/wi

i−1 βi−1)

= (H
r/wi

i , H
−rxi/wi

i mY r
i)

= (Hr
i+1, mY r

i+1)

= EPKi+1
(m; r)

Thus, the output of the last server is cl = EPKi+1
(m; r) = (gr, m), and gr can be discarded

to yield the plaintext m. Note the following equalities for all i ∈ [1, l]

106

αi = α
1/wi

i−1 (3.2)

βi−1

βi

= αxi
i (3.3)

Note that the DDH assumption ensures that, if one of two ciphertexts is partially decrypted,
no adversary can tell which one it was. Thus, in the mixnet setting, each mix server Mi

takes inputs (ci−1,1, . . . , ci−1,N) and produces outputs
(Dsk i

(ci,πi(1)), . . . ,Dsk i
(ci,πi(N))

)
, with-

out reencryption, with permutation πi selected so as to produce a lexicographically sorted
list.

Design Principle 21 (El Gamal with Indistinguishable Partial Decryption) The El
Gamal cryptosystem can be augmented so that each secret key includes an additional secret
w and encryption is performed using generator gw rather than g. Thus, partial decryption
of such a ciphertext requires changes to both elements of a ciphertext pair, and makes the
partial decryption operation indistinguishable.

Proof of Partial-Decryption and Permutation. In this new setting, there is only a
short witness that mix server Mi must prove knowledge of: the secret key (wi, xi). Wikström
proposes a new proof technique to accomplish this task. At a high level, the prover and
verifier interact as follows:

• Prover commits to its permutation π in the typical El Gamal q-order subgroup, by pro-
viding element-wise commitments to a permutation of a random vector with elements
in the q-order subgroup.

• Verifier provides a challenge of distinct primes (pi)i∈[1,N], all of the same bit-length.

• Prover commits to a permutation of the primes (pπ(i))i∈[1,N] in an appropriately sized

RSA group, then proves that
∏N

i=1 pi =
∏N

i=1 pπ(i) and
∑N

i=1 pi =
∑N

i=1 pπ(i). The sizing
of the RSA group ensures that these two proofs in fact demonstrate that (pπ(i))i∈[1,N]

is indeed a permutation of (pi)i∈[1,N].

• Prover effectively proves the equations 3.2 and 3.3 using equality of exponent dot
products of inputs and outputs with the random vector of primes (similar to Neff’s
technique, Design Principle 14.)

Wikström proves this construction secure in the UC framework, using his prior mixnet
ideal functionality definition. He also shows how his dual RSA/El-Gamal technique of per-
muting a random challenge of primes can be applied to other mixnet constructions that
perform reencryption.

107

Design Principle 22 (Equality of Exponent Dot Product with Vector of Primes)
A mix server performs a proof of a shuffle with exponent dot product, similar to Design Prin-
ciple 14, using a random vector of primes and a commitment to a shuffle of these primes
according to the original permutation. The random vector of primes is particularly useful
for proving appropriate shuffling: using an appropriately sized RSA group, demonstrating
equality of element-wise sums and products is enough to demonstrate proper permuting of
the test vector.

3.8.3 Adaptively Secure Mixnet

In 2006, Wikström and Groth [181] gave the first adaptively secure mixnet and prove its
security in the UC framework. Recall that, in this adaptive setting, parties to the protocol
may become corrupt in the middle of the process. This presents significant complications
when proving the UC security of a protocol, as the ideal simulator must be able to simulate an
honest participant’s complete history when this participant becomes corrupt. Some protocols
assume that participants can erase critical information as they go, in order to give the
adversary less power once it corrupts the participant: the ideal adversary only needs to
simulate the data that was not erased. Here, Wikström and Groth present a protocol that
does not require erasures. We describe very briefly the two techniques they use to solve these
complications. We leave the technical details to the original paper, as they are very involved
and require much additional reading.

Mixnet Protocol and Simulation Difficulties. Wikström and Groth use a variant of
the Paillier cryptosystem [133], with the usual additive homomorphism and thus reencryption
ability. Senders provide ciphertext inputs with a proof of knowledge of the plaintext. Each
mix server reencrypts and shuffles its inputs. Then, all mix servers jointly reencrypt the
last batch, which the mix servers finally decrypt jointly. This is the adaptation of Design
Principle 2 to the Paillier cryptosystem. Two complicating scenarios arise:

1. when a sender is corrupted after having already produced the ciphertext and proof of
knowledge of plaintext, and

2. when a mix server is corrupted after having shuffled its batch of inputs.

These scenarios provide a simulation problem in the UC proof of security: the ideal
adversary has to fake the actions of honest senders and mix servers without knowing their
inputs, but then, at corruption time, produce a history consistent with the now-revealed
inputs and the already published actions, like the proof of knowledge of plaintext for senders
and the proof of knowledge of randomization values and permutation for the mix servers.

108

Adaptively Corrupt Senders. The special Paillier variant introduced by Wikström and
Groth enables a double-ciphertext construction similar to that of Naor and Yung [122]. This
construction provides “straight-line extractability”: the ideal adversary can generate one of
the two keypairs, allowing it to extract the plaintexts without rewinding. This property is
crucial to proving security in the UC framework.

More importantly, the special form of this Paillier variant allows an ideal adversary that
has generated part of the keying material to produce a special ciphertext that it can open
up—along with a valid simulated history tape – to any plaintext at a later date. This
property lets the ideal advesary simulate adaptively corrupt senders in the mixnet setting:
once corruption occurs and the real input is revealed, the ideal adversary simulates the
proper history tape for that input and the bogus ciphertext it initially produced but can no
longer “retract.”

Design Principle 23 (Double-Ciphertext Construction) A Naor-Yung double-ciphertext
construction for mixnet inputs provides straight-line extractability, which enables the simula-
tion of a proper history tape in the case of adaptively corrupted senders in the UC framework.

Adaptively Corrupt Mix Servers. Wikström and Groth also introduce a novel, last
batch joint reencryption step, which is key to providing simulatability of adaptively corrupt
mix servers. Specifically, when a mix server is corrupted after it has shuffled its inputs but
before the ideal functionality has revealed the final ordering of the plaintexts, the ideal adver-
sary suddenly learns the real permutation input to the now-corrupt mix server. In the joint
reencryption step, the ideal adversary can use the special properties of the Paillier variant
ciphertext and its simulation of the keying material to cheat and “swap” the ciphertexts as
needed to correct for the prescribed permutation.

Design Principle 24 (Final Joint Reencryption) The mix servers perform a final joint
reencryption step before decryption. This step enables simulation of a proper history tape for
adaptively corrupted mix servers in the UC framework.

3.9 Summary

In this section, we provide a summary table of the mixnets we described, their basic prop-
erties, and the known attacks against them. This table should help to quickly determine
whether a mixnet protocol has been broken.

3.10 Conclusion

The mixnet research field is rich with fascinating contributions to secure cryptosystems,
efficient zero-knowledge proofs, and secure protocol definitions. With the efficient proofs

109

M
ix

n
et

S
ch

em
e

B
ased

O
n

A
ttacks

&
F
ixes

Fault-T
olerant

V
erif.

Soundness
P

rivacy
C

haum
O

nions
[39]

-
[138]

N
o

Sender
-

C
&

I
P
ark

et
al.

partial
dec.

[134]
-

[136,
151]

N
o

Sender
-

C
&

I
P
ark

et
al.

reenc.
[134]

-
[136,

151]
N

o
Sender

-
C

&
I

Sako
and

K
ilian

[151]
[134]

[118],
this

review
N

o
U

n
iv

.
O

W
P

roof
C

&
I

O
gata

et
al.

[127]
[134,

151]
-

Y
es

U
n
iv

.
O

W
P

roof
C

&
I

A
be

[1]
[134,

151]
-

Y
es

U
n
iv

.
O

W
P

roof
C

&
I

Jakobsson,
Juels,

R
ivest

[96]
[39]

-
-

U
n
iv

.
O

W
P

roof
†

C
&

I
P
erm

utation
N

etw
orks

[2,
94]

[134]
-

Y
es

U
n
iv

.
O

W
P

roof
C

&
I

Furukaw
a

&
Sako

[70]
[134]

-
Y

es
U

n
iv

.
O

W
A

rg
C

&
I

N
eff

[124]
[134]

-
Y

es
U

n
iv

.
O

W
P

roof
C

&
I

A
P

ractical
M

ix
[92]

[134]
[93,

55]
Y

es
Q

uorum
-

C
&

I
F
lash

M
ixing

[93]
[134,

92]
[119,

178]
Y

es
Q

uorum
-

C
&

I
O

ptim
istic

M
ixing

[84]
[134,

92]
[178]

Y
es

U
n
iv

.
O

W
A

rg
C

&
I

A
lm

ost
C

orrect
M

ixing
[26]

[134]
-

Y
es

U
n
iv

.
H

P
P

roof
(α

-dep.)
Incom

plete
P
arallel

M
ixing

[83]
[134]

-
Y

es
- ∗

- ∗
C

&
D

U
C

M
ixnet

[179]
[134,

55]
-

Y
es

U
C

O
W

P
roof

C
&

I
Sender-V

erifiable
M

ixnet
[180]

[134,
179]

-
Y

es
U

C
O

W
P

roof
C

&
I

A
daptively-Secure

M
ixnet

[181]
[179]

-
Y

es
U

C
O

W
P

roof
C

&
I

∗
T

hese
characteristics

depend
on

the
subprotocol

chosen,
w

hich
is

independent
of

P
arallel

M
ixing.

†
R

andom
ized

P
artial

C
hecking

has
a

slightly
w

eaker
definition

of
soundness,

though
one

suffi
cient

for
voting.

T
ab

le
3.1:

Sum
m

ary
ofM

ixnet
P

rotocols.
E

ach
m

ixnet
protocolis

listed
w

ith
the

prior
protocols

from
w

hich
it

inherits,the
papers

that
present

flaw
s,the

papers
that

present
fixes,the

verifiability
and

privacy
properties.

T
he

protocols
are

ordered
chronologically.

T
he

indicated
privacy

and
soundness

are
indicated

as
per

the
originally

claim
ed

values,not
the

result
of

any
potentialbreaks.

W
e

do
not

include
the

hybrid
m

ixnets
or

universalreencryption
in

this
com

parison,as
they

are
qualitatively

different.
C

&
I

stands
for

“C
om

plete
and

Indepenent,”
w

hile
C

&
D

stands
for

“C
om

plete
and

D
ependent.”

110

of Neff [124] and Furukawa and Sako [70], the efficiency of mixnets has become practical.
With the UC modeling work of Wikström, mixnets now have a solid formal model for solid
security proofs. It remains to be seen, in the future, whether efficient implementations like
Neff’s can be adapted to frameworks like Universal Composability.

111

.

.

.

.

.

.

.

.

.

M
1

M
2

c0,1

c0,2

c0,N

c1,1

c1,N

c1,2

M
1

c2,1

c2,2

c2,N

c
′

1,1

c
′

1,2

c
′

1,N

.

.

.

.

.

.

M
2

c
′

2,1

c
′

2,2

c
′

2,N

.

.

.

challenge = 0

challenge = 1

reveal π
′

1, . . . , π
′

l

reveal {r
′

1,j

}, . . . , {r
′

l,j

}

c
′

i,π′

i
(j)

= RE(c
′

i−1,j
, r

′

i,j
)

ci,φi(j) = RE(c
′

i,j
, r

′′

i,j
)

reveal φ1, . . . , φl

reveal {r
′′

1,j

}, . . . , {r
′′

l,j

}

Figure 3-3: Abe Zero-Knowledge Proof of Shuffle. The secondary shuffle is represented in dotted
lines. Each mix server’s secondary shuffle is dependent on the prior mix server’s secondary shuffle,
rather than the primary shuffle as in the Sako-Kilian proof.

112

 U0 = 1

V0 = 1

U1 = U0g
r1

V1 = V0G
r1 V2 = V1G

r2

U2 = U1g
r2

Ul = g

∑
ri

Vl = G

∑
ri

sk1 = x1 sk2 = x2 skl = xl

M1 M2 Ml

r1

R

← Z
q

r2

R

← Z
q

r
l

R

← Z
q

. . .

c ∈ Zq

s0 = 0 s1 = s0+

r1 − cx1 r2 − cx2

s2 = s1+ . . . sl =

∑

ri − c
∑

xi

Proof that log
g
y = log

G
Y

Together, the mix servers know the witness x =

∑

xi

Verifier checks:

Ul = g
s
y
c

Vl = G
s
Y

c

Figure 3-4: Abe’s Chained Chaum-Pedersen Proof of Joint Decryption. The typical Chaum-
Pedersen exchanges are passed through all the mix servers. For simplicity the diagram leaves
out the Lagrange interpolation suggested by Abe, and shows only one (g, y,G, Y) tuple. Abe
shows how to process all decryptions with one ri per mix server, effectively performing all
proofs in parallel.

Figure 3-5: Randomized Partial Checking. Each mix server reveals a random half of its corre-
spondences. Shown in red is a fully revealed path, which can happen if the number of mix servers
is small and the verification selection is completely random.

113

Figure 3-6: Randomized Partial Checking with Pairing. Mix servers are sequentially paired. The
ciphertexts “between” both members of each pair are randomly partitioned. The first mix server
reveals the corresponding inputs of its block, while the second mix server reveals the corresponding
outputs of its block. The partition ensures that no complete path from first input to last output is
revealed.

Figure 3-7: A Sorting Network. Composed of 2-by-2 sorters, this sorting network accomplishes
any permutation with an optimal number of sorters. This is called a Butterfly Network.

114

Chapter 4

Scratch & Vote

This chapter covers work to appear at the Workshop on Privacy in the Electronic Society,
in October 2006 [18]. This is joint work with Ronald L. Rivest.

4.1 Introduction

Cryptography can reconcile public auditability and ballot secrecy in voting. Votes are en-
crypted and posted on a public bulletin board, along with the voter’s name in plaintext.
Everyone can see that Alice has voted, though, of course, not what she voted for. The
encrypted votes are then anonymized and tallied using publicly verifiable techniques.

Most cryptographic voting schemes require complex equipment and auditing. A certain
degree of complexity is unavoidable, as the functional goal of cryptographic voting is to
run an election correctly while trusting third parties as little as possible. Unfortunately, this
complexity often stands in the way of adoption. If it takes significant expertise to understand
how a voting system functions, and if the operation of the system is particularly complex,
election officials and the public may be reluctant to adopt it. The question, then, is how
much can we simplify the voting process while retaining cryptographic verifiability?

Voting systems & scratch surfaces. In recent months, Arizona has proposed running
a cash-prize lottery for all citizens who vote [143]. In response, a well-known online satirical
publication jokingly proposed a “Scratch & Win” voting system [158]. Though our proposal,
Scratch & Vote, uses scratch surfaces, it should not be confused with a game of chance. That
said, we hope that, given the public’s familiarity with scratch surfaces, our own use of them
will help spark more widespread interest in the topic of cryptographic voting.

4.1.1 Scratch & Vote

We propose Scratch & Vote (S&V), a cryptographic voting method that provides public
election auditability using simple, immediately deployable technology. S&V offers:

1. Paper ballots: ballot casting is entirely paper- and pen-based.

115

2. Self-contained ballot auditing: ballots contain all the necessary information for
auditing; there is no need to interact with the election officials.

3. Simple tallying: ballots are tallied using homomorphic encrypted counters rather
than mixnets. Anyone can easily verify the final tally, and election officials need only
cooperate to decrypt a single tally ciphertext per race.

The voter experience is simple and mostly familiar:

• Sign in: Alice signs in and obtains a ballot with randomized candidate ordering.
Election officials should not see this candidate ordering. The ballot is perforated along
its vertical midline, with candidate names on the left half and corresponding optical-
scan bubbles on the right. A 2D-barcode is positioned just below the checkboxes on
the right. A scratch surface labeled “void if scratched” is positioned just below the
barcode, and an additional perforation separates the scratch surface from the rest of
the right half. (See Figure 4-1.)

• Audit [optional]: Alice may select a second ballot for auditing. She scratches off the
scratch surface, hands the now void ballot to a helper organization on the premises,
i.e. a political party or activist organization she trusts, and receives confirmation that
the ballot was well-formed. This gives Alice confidence that her first ballot is also
well-formed: if enough voters perform the audit, even a handful of bad ballots will be
quickly detected. (See Figure 4-2.)

• Make selection: Alice steps into the isolation booth to make and review her selection.

• Detach ballot halves: Alice separates the two halves of the ballot. A receptacle is
available for her to discard her left ballot half. Note that this discarded half carries no
identifying information, only a randomized candidate ordering. (See Figure 4-3.)

• Casting: Alice presents the right half of her ballot to an election official, who inspects
the scratch surface to ensure it is intact. (Because the left half has been discarded,
the election official cannot tell for whom Alice voted.) The official then detaches the
scratch surface and discards it in sight of all observers, including Alice herself. Alice
then feeds what remains of her ballot—the checkmark and barcode—into an optical
scanner. This is effectively her encrypted ballot. Alice takes it home with her as a
receipt. (See Figure 4-4.)

• Verification: Alice can log on to the election web site to verify that her ballot,
including checkbox and barcode, has been correctly uploaded to the bulletin board. If
it hasn’t, she can complain with receipt in hand. Alice can also verify the entire tally
process, including the aggregation of all ballots into a single encrypted tally, and the
verifiable decryption performed by election officials. (See Figure 4-5.)

116

Bob

Charlie

David

Adam

Bob

Charlie

David

Adam

Figure 4-1: A Scratch & Vote ballot, before and after Alice makes her selection. The ballot is
perforated along two axes: down the vertical midline, and between the barcode and scratch
surface on the right half.

This description uses the Scratch & Vote adaptation of the Ryan Prêt-a-Voter ballot. In
section 4.5, we also show how to achieve the same features based on a new ballot inspired
by Chaum’s Punchscan, whose physical layout accommodates numerous races more easily.
We consider the threat model and certain extensions to our proposal that further increase
practicality.

4.1.2 Overview of the Ideas

Scratch & Vote combines a number of existing cryptographic voting ideas in a novel way,
with some interesting new variations.

Homomorphic tallying. Cryptographic paper ballots do not naturally support write-
in votes. Generally, when Alice wants to write in a name, she selects the “write-in” pre-
determined pseudo-candidate option, and follows a separate process to specify her candidate.
Thus, our first proposal for S&V is to use homomorphic aggregation to simplify the tally for
pre-determined candidates, as originally proposed by Benaloh [43, 19] and, more specifically,
as extended by Baudron et al. [13] for multi-candidate election systems. This design choice
opens the door to further simplifications.

2D-barcode and scratch surface. With homomorphic tallying and pre-determined can-
didate names, all of the ciphertexts required for one race on one ballot can be fully represented
using a single 2D-barcode. The randomization values used to generate these ciphertexts is
also printed on the ballot, under a scratch surface. Thus, a ballot is entirely self-contained:
by scratching and checking the encryption of the candidate ordering against the ciphertexts
in the 2D-barcode, one can immediately verify ballot correctness. This auditing requires
only a simple barcode scanner, a basic computer, and the public election parameters.

117

Bob

Charlie

David

Adam

Charlie

Adam

Bob

David

r0r1r2r3

Figure 4-2: Auditing the S&V ballot. Alice receives two ballots and chooses to audit one
at random, removing its scratch surface. In this diagram, Alice selects the ballot on the
left. Alice’s chosen helper organization then scans the barcode, reads the randomization
data r1, r2, r3, r4 (one value per candidate) previously hidden under the scratch surface, and
confirms that the ballot is correctly formed. Alice then votes with the second, pristine ballot.

Cut-and-choose at the precinct. Once a ballot is audited, it cannot be used for voting:
with its randomization values revealed, the ballot is no longer privacy-protecting. Thus,
auditing is used in a cut-and-choose process: each voter may select two ballots, auditing one
and voting with the other. The specific advantage of S&V is that this cut-and-choose auditing
requires no election official intervention: the ballot and the public election parameters are
sufficient. Thus, auditing in S&V is practical enough to be performed live, in front of the
voter, before she casts her ballot. In addition, local election officials may audit a number of
ballots on their own before voting begins: once again, these local election officials only need
the public election parameters to successfully audit.

Proofs of correctness and certified ballot list. In a homomorphic tallying system,
auditors want assurance that the encrypted ballots contribute no more than one vote per
race ; otherwise, a malicious official and voter could collude to artificially inflate a candidate’s
tally. For this purpose, election officials prepare zero-knowledge proofs of correctness for each
official ballot. These proofs are published on the bulletin board for all to see prior to election
day, and only ballots whose proofs verify are included in the tally.

As a result of this tallying condition, voters now need assurance that their ballot won’t
be disqualified at some point after ballot casting. Unfortunately, the sheer size of the proof
precludes printing it on the ballot alongside the ciphertexts.

To address this concern, election officials produce a certified ballot list containing ballots
that officials are prepared to guarantee as correct. This certified list can be easily downloaded
to each physical precinct before the polls open. The voter can then check that his ballot is
present on the certified list before voting. In addition, this certification prevents spurious
complaints from malicious voters who might inject fraudulent ballots in to the system solely
for the purpose of complaining and holding up the proper execution of the election.

118

C
ha

rli
e

Bo
b

D
av

id

Ad
am

Charlie
Bob

Adam
David

Adam

Bob

Charlie

David

Bob

Charlie

David

Adam

Figure 4-3: Separating the S&V ballot. Alice separates the left half of her ballot and places
it into the appropriate receptacle which contains other discarded left halves (Alice could
easily take one to claim she voted differently.)

4.1.3 Related Work

Chaum [40] introduced the first paper-based cryptographic scheme in 2004. Ryan et al.
[41] proposed a variant, the Prêt-a-Voter scheme, recently extended to support reencryption
mixes and just-in-time ballot printing [149]. Another variant by Randell and Ryan [144]
suggests the use of scratch surfaces (though for different goals than ours). Chaum’s latest
variant, called Punchscan [66, 38], proposes a number of interesting variations to further
simplify the paper-based voting approach.

All of these methods make use of mixnets to anonymize the ballots, though it should
be noted that the mixnet proposed by Punchscan is simplified and uses only hash-based
commitments for the shuffle permutation. In this latter case as well as in most decryption
mixnets, proofs are performed by randomized partial checking [96]. In the case of reencryp-
tion mixnets, Neff’s proof [124] can be used. In all cases, however, the officials are involved
in the anonymization of each ballot.

4.1.4 Organization

In section 4.2, we cover some preliminaries. We cover the basic S&V method in section 4.3,
some potential extensions in section 4.4, and the adaptation of S&V to the Chaum ballot
in section 4.5. We consider the system’s threat model in section 4.6, before concluding in
section 4.7.

4.2 Preliminaries

In this section, we briefly review certain cryptographic concepts. Though some of these
concepts are detailed in Chapter 2, we provide simple summaries here for easy reference.

119

Scan &
take home

Figure 4-4: Casting the S&V ballot. The election official verifies that the scratch surface is
intact, then discards it. The remainder of the ballot is cast using a typical modern scanner
(likely more advanced than typical optical scanning voting machines.) Alice then takes it
home as her receipt.

4.2.1 Paillier Cryptosystem

The Paillier public-key cryptosystem [133] provides semantically-secure encryption, efficient
decryption, and an additive homomorphism by ciphertext multiplication. The details of the
Paillier cryptosystem are covered in Chapter 2.

Generalized Paillier. Damg̊ard and Jurik [48] provide a generalization of the Paillier
cryptosystem that yields a larger plaintext domain with relatively less ciphertext expansion.
Specifically, a plaintext in Zns can be encrypted into a ciphertext in Zn(s+1) , where the
security of the scheme still depends on the bit-length of n. The security of this generalized
scheme is proven under the same assumption as the original Paillier scheme.

Threshold Decryption. The Paillier cryptosystem supports fairly efficient threshold de-
cryption [68], even in its generalized form [48]. Paillier also supports fairly efficient dis-
tributed key generation [49]. In other words, it is possible for l officials to jointly generate a
Paillier keypair (pk , sk) such that each has a share sk (i) of the secret key. It is then possible
for any k of these l officials to jointly decrypt a ciphertext in a truly distributed protocol.

Practical Considerations. The security of the Paillier cryptosystem relies on the hard-
ness of the factoring problem. Thus, we must assume at least a 1024-bit modulus, and
potentially a 2048-bit modulus. Given a κ-bit modulus, plaintext size is κ bits while ci-
phertext size is 2κ bits. For a larger plaintext domain, we can use Generalized Paillier, as
described above.

120

Bulletin Board
Alice Bridget Carol

Figure 4-5: Verifying proper S&V casting. Alice can look up her ballot on the web, using
her name and confirming that the barcode matches (assuming she or her helper organization
has a barcode scanner.)

0000 0000 0000

0001 0000 0000

0000 0001 0000

Vote for Adam

Vote for Bob

Vote for Charlie0000

0000

0001

0000 0000 0001 Vote for David0000

Figure 4-6: A homomorphic counter with 4 slots. Assuming decimal encoding in this dia-
gram, a vote for Adam is encoded as 1012, a vote for Bob is encoded as 108, a vote for Charlie
as 104, and a vote for David as 100 = 1.

4.2.2 Homomorphic Counters

The homomorphic voting approach was made practical by Baudron et al. [13], using tech-
niques introduced by Benaloh [43, 19]. The homomorphic multi-counter was specifically
formalized by Katz et al. [105].

Baudron et al. describe a multi-counter encrypted under an additive cryptographic sys-
tem, like Paillier. The bit-space of the plaintext is partitioned into separate counters, en-
suring that enough bits are dedicated to each counter so that no overflow occurs from one
counter to another (as this would violate the correctness of the multi-counter). See Figure
4-6 for an illustration.

Assuming a message domain of Zn where κ = |n| is the bit-size of n, we encode a value
tj for counter j ∈ [1, z] as

121

tj · 2((j−1)M)

and, thus, a set of z counters as:

z∑
j=1

tj2
(j−1)M

Thus, each counter can run only up to 2M −1, and we must ensure that κ > zM . To add 1 to
counter j contained within the multi-counter T , we use the additive homomorphic property:

T ′ = T · Epk(2
(j−1)M)

Note that, given the semantic security of the Paillier cryptosystem, an observer cannot tell,
from looking at this homomorphic operation, which internal counter was incremented. In
other words, given encrypted messages, the homomorphic aggregation into an encrypted
counter can be performed by anyone, including election officials and observers who have no
privileged information.

4.2.3 Proofs of Correctness and NIZKs

If Alice encrypts a message m into a ciphertext c using the Paillier cryptosystem, she can
prove, in honest-verifier zero-knowledge, that c is indeed the encryption of m, using a typical,
three-round interactive protocol similar to Guillou and Quisquater’s proof of RSA pre-image
[88].

Using the techniques of Cramer et al. [44], this protocol can be extended to prove that
ciphertext c encrypts one of possible values (m1, m2, . . . , mz), without revealing which one.
Combining this with the homomorphic proof technique of Juels and Jakobsson [94], one can
prove, fairly efficient and in zero-knowledge, that a set of ciphertexts (c1, c1, . . . , cz) encrypts
a permutation of m1, m2, . . . , mz, assuming that no two subsets of {mi} have the same sum:

• for each ci, prove that ci encrypts one of m1, . . . , mz,
• prove that the homomorphic ciphertext sum

⊕
i ci is the correct encryption of the

plaintext sum
∑

i mi.

For more than a handful of plaintexts, more efficient proof techniques are available, including
Neff’s shuffle proof of known plaintexts [124].

In any case, all of these proofs can be made non-interactive using the Fiat-Shamir heuris-
tic [65], where the interactive verifier challenge is non-interactively generated as the crypto-
graphic hash of the prover’s first message in the three-round protocol. These types of proof,
first introduced by Blum et al. [22], are abbreviated NIZKs.

122

4.2.4 Paper Ballots

Existing paper-based cryptographic methods use two types of ballot layout: the Prêt-a-Voter
split ballot, and the Punchscan layered ballot. We review these approaches here, as they can
be both adapted to use S&V.

8c3sw

David

Adam

Bob

Charlie

8c3sw

David

Adam

Bob

Charlie

Figure 4-7: The Prêt-a-Voter Ballot: A ballot is a single sheet of paper with a mid-line
perforation. The Voter fills in her choice, then tears the left half off and destroys it, casting
the right half.

Prêt-a-Voter. In Ryan’s Prêt-a-Voter, the ballot is a single sheet of paper with a per-
forated vertical mid-line. Candidate names appear on the left in a per-ballot-randomized
order, with a corresponding space on the right half for a voter to mark his choice. After the
voter has marked his choice, the two halves are separated: the left half (the one with the
candidate names) is discarded, and the right half is cast. The right half contains a mixnet
onion that allows administrators to recreate the left half of the ballot and determine the
voter’s choice. See Figure 4-7.

Punchscan. In Chaum’s Punchscan [66], the ballot is composed of two super-imposed sheets.
The top sheet contains the question, an assignment of candidates to codes (randomized by
ballot), and physical, circular holes about half-an-inch wide which reveal codes on the bottom
sheet. The codes on the bottom sheet match the codes on the top sheet, though their order
on the bottom sheet is randomized. There may also be “dummy” holes and “dummy” values
showing through.

Alice, the voter, selects a candidate, determines which code corresponds to this candidate,
and uses a “bingo dauber” to mark the appropriate code through the physical hole. The
use of this thick marker causes both sheets to be marked. Then, Alice separates the two
sheets, destroys one, and casts the other. Individually, each sheet displays the voter’s choice
as either a code or a position, but the correspondence of code to position is only visible
when both sheets are together. A hash-committed permutation on both sheets allows the
administrators to reconstitute the discarded half and recover the vote. Because Alice chooses

123

which half to destroy and which half to cast, she can eventually get assurance, with 50%
soundness, that her ballot was correctly formed: the election officials eventually reveal what
the kept halves should look like.

q r m x

8c3sw

Adam - x
Bob - q

Charlie - r
David - m

8c3sw

q r m x

Adam - x
Bob - q

Charlie - r
David - m

q r m x

8c3sw

q r m x

Adam - x
Bob - q

Charlie - r
David - m

q r m x

8c3sw

Figure 4-8: The Chaum Ballot: A ballot is composed of two super-imposed sheets. Alice,
the voter, marks both sheets simultaneously using a dauber. The two sheets are separated,
one is discarded, and the other is scanned and posted on the bulletin board. This same half
is also the voter’s receipt.

Auditing Prêt-a-Voter and Punchscan. In both Prêt-a-Voter and Punchscan, there are
two ballot auditing components: verification of the correct ballot form, and verification
of correct tallying. In both schemes, a system-wide cut-and-choose is performed before the
election: for a randomly selected half of the ballots, election officials reveal the randomization
values used in creating the ballots. These audited ballots are thus spoiled, as they no longer
protect ballot secrecy. The remaining ballots, now proven to be almost all correct with very
high probability, are used in the actual election. Once ballots are cast, they are shuffled,
and the post-election audit consists of Randomized Partial Checking [96] on the shuffle and
the prior permutation commitment. Punchscan adds an additional verification of ballot form
after the election, thanks to the voter decision of which half to keep and which half to
discard. This guarantees that any cheated ballot that made it through the initial audit will
be detected with 50% probability.

Limitations. In the case of Prêt-a-Voter, significant synchronous involvement of election
officials is required during all audits. It is particularly challenging to interactively reveal the
randomization values for half the ballots while keeping the other half truly secret. Conse-
quently, this audit is performed by election officials in advance. Individual voters must trust

124

that this audit was performed correctly, in particular that election officials didn’t collude to
produce faulty ballots. This is, in effect, a weakening of the ballot casting assurance prop-
erty (see Chapter 5) we desire from cryptographic voting systems. Ideally, voters should get
direct assurance that their vote was recorded as intended, without having to trust election
officials.

In the case of Punchscan, there is also some degree of dependence on synchronous in-
volvement of the election officials. It should be noted, however, that the additional check
performed on the ballot form alleviates this situation: Alice now gets direct assurance that
her ballot was correctly formed. Unfortunately, this assurance comes after the close of elec-
tions. This may reduce Alice’s trust in the system, since the error correction protocol will
likely be onerous.

4.3 The Scratch & Vote Method

We now present the details of the Scratch & Vote method. To make the process as concrete
as possible, we give a practical example of a single race with four candidates. Our description
assumes a single race for now. Section 4.4 naturally extends these techniques to multiple
races.

4.3.1 Election Preparation

At some point prior to election day, the list of candidates is certified by election officials
and publicized for all to see. The z candidates are ordered in some fashion for purposes of
assigning index numbers (alphabetical order is fine). This ordering need not be known by
individual voters: election laws on candidate ordering should not apply to here.

Election officials then jointly generate a keypair for the election, where official Oi holds
share sk (i) of the decryption key sk , and the combined public key is denoted pk . A parameter
M is chosen, such that 2M is greater than the total number of eligible voters. Election officials
ensure that κ = |n| is large enough to encode a multi-counter for z candidates, each with M
bits, i.e. κ > Mz. A vote for candidate j is thus encoded as Epk(2

(j−1)M). When all is said
and done, the election parameters are publicized:

params =
(
pk , M, {cand1, cand2, . . . , cand z}

)

Example. With z = 4 candidates, a candidate ordering is assigned: Adam is #1, Bob #2,
Charlie #3, and David #4. With 2×108 eligible voters (big enough for the entire US), we set
M = 28 > log2(2 × 108). A Paillier public key with κ = |n| = 1024 bits is largely sufficient
for this single-race election. In fact, we could have up to 35 candidates for this single race,
or 7 races with 5 candidates each, without having to alter cryptographic parameters.

125

4.3.2 Ballot Preparation

Bob

Charlie

David

Adam

PARAMETERS

#1 - Adam
#2 - Bob
#3 - Charlie
#4 - David

M=28, Public Key = pk

r1 r2 r3

Epk (2
28

; r1)

Epk (2
56

; r2)

Epk (2
84

; r3)

Epk (2
0
; r4)

H(pk)

r4

Figure 4-9: Public Election Parameters and the S&V Ballot. Election parameters are on
the left. The ballot is midline-perforated. The order of the candidate names is randomized
for each ballot. The 2D-barcode on the bottom right corner of the ballot contains cipher-
texts encoding the candidates in the corresponding order according to the public election
parameters. The scratch surface on the left hides the randomization values r1, r2, r3, r4 used
to create the ciphertexts on the right. The ballot also includes an identifier of the election,
which can simply be a hash of the election public key.

The Ballot. Our first S&V ballot is based on the Ryan Prêt-a-Voter ballot[41]. Each
ballot is perforated along a vertical mid-line. On the left half of the ballot is the list of
candidate names, in a randomized order. The right half of the ballot lines up scannable
checkboxes (shown as lines in the diagram), with each candidate on the left half. The voter
will mark one of those checkboxes.

Also on the right half, the S&V ballot contains the representation of ciphertexts that
encode votes corresponding to each ordered option. The representation of these ciphertexts
can be machine-readable only and should be optically-scannable, e.g. a 2D-barcode [174].
Just below this barcode, the ballot also includes a scratch surface, under which are found
the randomization values used to produce the ciphertexts in the barcode. (See Figure 4-9.)

The Proofs. Election officials must also generate NIZK proofs of ballot correctness. These
proofs will not be printed on the ballot, as they are too long. Instead, they are kept on the
public bulletin board, indexed by the sequence of ciphertexts on the corresponding ballot
(or a hash thereof), and used at tallying time to ensure that all ballots contribute at most
one vote per race.

In addition to these proofs, election officials compile an official ballot list, which includes
all properly created ballots designated again by the sequence of ciphertexts on each ballot.
Officials digitally sign this ballot list, posting the list and signature on the bulletin board.

126

This official ballot list is particularly useful to help prevent various denial-of-service attacks
against both voters and election officials.

Example. Assume the randomized candidate ordering of a given ballot is “Bob, Charlie,
David, Alice”, or, by index, “2,3,4,1”. Recall that M = 28. The machine-encoding on
the right ballot half should then be: c1 = Epk(2

28; r1), c2 = Epk(2
56; r2), c3 = Epk(2

84; r3),
c4 = Epk(2

0; r4).
This encoding requires 4 ciphertexts, or 8192 bits. Under the scratch surface lie, in plain-

text, r1, r2, r3, r4. Election officials also generate ΠH(c1,c2,c3,c4), a NIZK of proper ballot form
indexed by the ciphertexts, then post it to the bulletin board. The same hash H(c1, c2, c3, c4)
is also included in the compiled list of official ballots, which the election officials eventually
sign.

4.3.3 Ballot Auditing

Ballot auditing in S&V uses a cut-and-choose approach to verify candidate ordering (while
further ballot correctness is enforced by the bulletin-board NIZK). A random half of the
ballots are audited, and almost all remaining ballots are then guaranteed to be correctly
constructed: the probability that more than x bad ballots go undetected is 2−x. Once
audited, a ballot is spoiled and cannot be used to cast a vote.

Auditing a single ballot. This auditing process is similar to that of Prêt-a-Voter and
Punchscan, with one major difference: auditing can be performed using only the public
election parameters, without election-official interaction:

1. Scratch: the scratch surface is removed to reveal the randomization values.

2. Encrypt: the candidate ordering is encrypted with the revealed randomization values.

3. Match: the resulting ciphertexts are matched against the ciphertexts in the 2D-
barcode.

Note that, to automate this process without having to scan or type in the displayed candidate
ordering, one might perform the matching the other way around: read the ciphertexts,
try all possible plaintext candidates with each revealed randomization value (effectively a
decryption), and match the resulting candidate ordering with the ballot’s displayed candidate
ordering. Matching the ordering can be performed by the voter herself.

Spoiling a ballot. A ballot no longer protects privacy if its randomization values are
revealed. Thus, if its scratch surface is removed, a ballot should be considered spoiled, and
it cannot be cast. This is consistent with existing uses of scratch surfaces, e.g. those used
on lottery tickets, and the usual “void if scratched off” message can be printed on top of the
scratch surface. This condition for ballot casting must be enforced at ballot casting time, as
will be described Section 4.3.4.

127

Who should audit? Though we find that individual voter auditing is preferable, some
might prefer to audit ballots in a centralized fashion. Scratch & Vote supports such an
audit method, of course. One can also imagine officials auditing a few ballots on their own
before election day, in addition to per-voter auditing. S&V enables all of these auditing
combinations.

Checking for Variability in Ordering. Malicious election officials might attempt to
breach Alice’s privacy by presenting all voters only ballots with the same candidate ordering.
To protect against this de-randomization attack, Alice should select her two ballots herself,
ensuring that there is enough variability between the ballots offered to her.

Chosen ballot check. Alice must also check the ballot she actually uses: she needs assur-
ance that her ballot will count, specifically that it won’t be disqualified for some unforeseen
reason, e.g. an invalid NIZK proof at tallying time. For this purpose, Alice checks the pres-
ence of her ballot on the certified official ballot list, which she can obtain from the bulletin
board ahead of time. If, at a later date, Alice’s ballot is disqualified for any reason, she can
present the signed official ballot list as a complaint.

4.3.4 Ballot Casting

On election day, after having audited and spoiled a first ballot, Alice enters the isolation
booth with a second ballot. She fills it out by applying a checkmark (or filling in a bubble)
next to the candidate name of her choice. She then detaches the left half of the ballot and
discards it in the appropriate receptacle (inside the booth). She then leaves the voting booth,
and casts her ballot as follows:

1. Confirm: An election official verifies that the scratch surface on Alice’s ballot is intact.
This is crucial to ensuring the secret ballot: if a voter sees the randomization values for
the ballot she actually casts, then she can prove how she voted to a potential coercer.
The official then detaches and discards the scratch surface in view of all observers.

2. Scan: Alice feeds the remainder of her ballot through an optical scanning machine,
which records the barcode and checkmark position and posts them on a bulletin board
along with Alice’s name or voter identification number.

3. Receipt: Alice retains this same remainder as her encrypted receipt. She can later
check that her ballot is indeed on the bulletin board.

4.3.5 Tallying

For each ballot on the bulletin board, election officials and observers check its NIZK. If it
verifies, the ciphertext corresponding to the checkmark position is extracted from the 2D-
barcode and aggregated into the homomorphic counter, just like any other homomorphic

128

voting system. Anyone can verify that only valid ballots have been aggregated, as any
observer can verify the NIZK and re-perform the appropriate homomorphic aggregation.

Similarly, all election trustees can independently verify that the homomorphic aggregation
has been performed correctly. Then, the single resulting ciphertext counter is decrypted by
a quorum of these trustees, along with proofs of correct decryption. The resulting plaintext
reveals the vote count for each candidate. The tally and trustee proofs are posted to the
bulletin board for all to see.

4.3.6 Performance Estimates

We consider computation and size requirements, specifically

• generating the NIZK proofs for each ballot, given that ZK proofs are typically expen-
sive,

• auditing a ballot at voting time, given the voter’s limited time and patience, and

• the physical size of the barcodes.

Consider an election with 5 races, each with 5 candidates.

Proofs. Each race contains 5 ciphertexts, one per candidate. Using the CDS [44] proof-
of-partial-knowledge technique, each ciphertext must be proven to encrypt one of the 5
candidates. The CDS technique simulates 4 of these proofs and computes a fifth one for
real. This requires the equivalent work of 5 proofs, both in terms of computation time and
number of bits needed to represent the proof. In addition, the homomorphic sum of the
ciphertexts must be proven to encrypt the sum of the candidate representations, which is
one more proof. Thus, each race requires 26 proofs, and 5 races thus require 130 proofs.

Each of these proofs, whether real or simulated, requires two modular exponentiations.
The entire proof thus requires a total of 260 modular exponentiations. Conservatively, mod-
ern processors can perform a 1024-bit modular exponentiation is approximately 12ms on a
2.8Ghz machine running GMP [85]. Thus, a single ballot proof can be performed in just
over 3 seconds on a single CPU.

Each of these proofs is composed of 2 Paillier ciphertext space elements, and one Paillier
plaintext space element (the challenge). Assuming a 1024-bit modulus, the ciphertext ele-
ments are 2048 bits and the plaintext is 1024 bits. Thus, each proof require 5120 bits, and
the entire ballot thus requires 83 kilobytes of proof data on the web site.

Ballot Verification. At the polls, the only verification needed is that of correct encryption
on the audited ballot. Given the 5 randomization values, all 5 values of rn can be computed
through modular exponentiation, after which only modular multiplications are needed, which
are negligible by comparison. Thus, ballot verification can be performed in 60ms per race,
or 300ms for our considered ballot. The scratch-off and the time allotted for each person to
vote (1-2 minutes) will likely make the cryptographic cost negligible.

129

Barcode Size The PDF417 2D-barcode standard [167] can store 686 bytes of binary data
per square inch, using a symbol density that is easily printed and scanned. In our example
with 25 candidates, 25 Paillier ciphertexts are required, which means 6400 bytes, assuming
κ = 1024 (a 1024-bit modulus for Paillier.) Thus, 10 square inches are sufficient to represent
all of the ciphertexts we need for this sample election. Even if we factor in significant error
correction, this represents less than 1/8th of the surface area of a a US Letter page.

4.4 Extensions

We now explore a few extensions to make Scratch & Vote even more practical.

4.4.1 Helper Organizations

We do not expect individual voters to show up to the polls with the equipment required to
audit ballots and check the official ballot list. Instead, helper organizations, e.g. political
parties and activist organizations, can provide this service at the polls. Voters can consult
one or more of these, at their discretion. Most importantly, these helpers are not trusted
with any private election data. Chapter 5 provides more details on these helper organizations
and how they fit into the voting process to ensure the property of ballot casting assurance.

4.4.2 Multiple Races & Many Candidates

When the election contains more than one race, it may outgrow the space of the multi-
counter, which can only hold |n|/z counters. One solution is to use higher-degree encryption
using the Damg̊ard-Jurik generalization [48], so that the counter space can be s|n| rather
than |n|, with a corresponding ciphertext length of (s+1)|n|. Unfortunately, this ciphertext
size may outgrow the 2D-barcode encoding, which is expected to hold no more than a few
kilobytes.

Another option is to designate, in the public election parameters, separate multi-counters,
potentially one per race. In that case, the parameters must also indicate the race/multi-
counter assignments. With a separate 2D-barcode per race, most practical cases are ac-
counted for (barring elections such as the California Recall election of 2004, which had more
than 100 candidates.)

In extreme cases, such as the California Recall of 2004, there is no choice but to use
the Damg̊ard-Jurik generalization, as the individual ciphertexts for a given race should not
be distinguishable and thus cannot be assigned to different multi-counters. If a single 2D-
barcode cannot hold all the required ciphertexts for that one race, we can, as a last resort,
designate a separate 2D-barcode for each candidate. The resulting auditing complexity is
an inevitable consequence of these extreme conditions.

130

4.4.3 Reducing the Scratch Surface

As the printed material behind the scratch surface may become damaged from the scratching,
we cannot expect to reliably store significant amounts of data behind this scratch surface. In
fact, it is easy to reduce this data by having election parameters designate a pseudo-random
function, call it PRF, which generates all the randomization values from a single short seed,
which need only be 128 bits. Such a data length can be easily encoded as alphanumeric
characters or as a single-dimension barcode, both of which offer enough redundancy to
withstand a few scratches.

4.4.4 Chain Voting and Scratch Surfaces

All paper-based voting systems have long been known to be susceptible to chain voting
attacks. In these attacks, a coercer gives Alice a pre-marked ballot before she enters the
polling location, expecting her to cast this pre-marked ballot and return a blank ballot to
him on her way out.

The well-known countermeasure to chain voting attacks [100] suggests having unique
ballot identifiers on a tear-off slip attached to the ballot. An official writes down the ballot
identifier for Alice before she enters the isolation booth. At ballot casting time, the official
checks that the ballot identifier is still present and matches the recorded value. Then, for
anonymity, the identifier is torn off and discarded.

This process is, in fact, almost identical to the scratch surface tear-off we suggest. Thus,
our election-official verification process can be piggy-backed onto existing practices. In ad-
dition to checking the ballot identifier, the election official must simply check the scratch
surface integrity. The overhead of our proposal at casting time is thus minimal.

4.4.5 Write-Ins

Like the Prêt-a-Voter and Punchscan ballots, Scratch & Vote does not support write-in votes
out of the box. A separate system should be used, where a special option named “write-in”
is selected by the voter, and the voter can separately cast the content of the write-in. The
details of this process can be worked out for all paper-based schemes, possibly using the
vector-ballot method of Kiayias and Yung [107].

4.5 Adapting Punchscan

Recall that Chaum’s Punchscan facilitates more races per ballot than Prêt-a-Voter, because
the full ballot face can be used without a midline separation. However, Punchscan is also
more complicated, because the voter may cast either sheet. This makes the mandatory
destruction of the remaining half more delicate, since Alice could easily sell her vote if she
successfully preserves the second half.

Thus, we propose a new ballot that combines the qualities of Punchscan and Prêt-a-
Voter and adds the S&V method. As this ballot originated from Punchscan, we call it the

131

Punchscan Scratch & Vote ballot. However, we emphasize that it inherits some properties
from Prêt-a-Voter, too.

c a b d

Adam - a
Bob - b

Charlie - c
David - d

c a b d

Adam - a
Bob - b

Charlie - c
David - d

c a b d

Figure 4-10: The Punchscan Scratch & Vote variant. The left and middle sheets are su-
perimposed to create the ballot on the right. The bottom sheet contains no identifying
information. The top layer has circular holes big enough to let the candidate ordering from
the bottom sheet show through. The checkmark locations, represented by small squares, are
only on the top layer. Note how the codes corresponding to the candidates are intuitive,
rather than random.

Punchscan Scratch & Vote Ballot. The Punchscan Scratch & Vote ballot, like Punchscan,
is composed of two superimposed sheets. Unlike the original Punchscan, the two sheets serve
different purposes. Alice, the voter, will be expected to separate both halves and cast the top
half in all cases. The bottom half, like Prêt-a-Voter’s left half, is generic, and its destruction
need not be strongly verified. This change is “safe” because the cut-and-choose is now
performed by verifying two ballots, rather than splitting one. Note that, in addition, while
the original Punchscan’s cut-and-choose can only be verifier after having cast a ballot, this
variant allows the voter to verify before casting a ballot.

The top sheet lists the races and candidates in standard order, with a standard code
assigned to each candidate (e.g. ‘D’ for democrats, ‘R’ for republicans.) Again, this differs
from the Punchscan ballot, where random codes are assigned to candidates. This top sheet
offers checkboxes for each race, and one hole above each checkbox which reveals the code
letter displayed on the bottom half at that position. Also included on the top sheet are the
S&V components: the ciphertexts in a 2D-barcode, and the randomization values hidden
under a scratch surface.

The bottom sheet contains only the standard candidate codes in random order. The
ciphertexts on the front sheet should match this random order. Note, again, that this
bottom sheet is entirely generic: it contains no identifier of any kind, no ciphertexts, and no
randomization values. It functions exactly like the Prêt-a-Voter left half.

132

c a b d

Adam - a
Bob - b

Charlie - c
David - d

c a b d

c a b d

d bc a

c
a

b
d

a

b

d

c

Adam - a
Bob - b

Charlie - c
David - d

Figure 4-11: The Punchscan Scratch & Vote ballot separation. Alice separates the top and
bottom sheets, depositing the bottom sheet in the appropriate receptacle. The top sheet is
effectively an encrypted ballot.

Pre-voting Verification. Just like in the original Prêt-a-Voter-based S&V ballot, Alice
chooses two ballots. She audits one by scratching off the scratch surface and having a helper
organization verify the randomization values for the ballot’s candidate ordering. Alice then
votes with the second ballot, as the audited ballot with the scratch surface removed is now
void.

Casting the Ballot. Alice marks her ballot in isolation. Note that, unlike the original
Punchscan method, the markings in the top-sheet bubbles do not bleed through to the bottom
half. When she is ready, Alice detaches the bottom half of the ballot and discards it in the
proper receptacle (where, again, she can easily grab another bottom half to claim that she
voted for someone else.)

Alice then presents the top sheet of her ballot to the election official, who treats it exactly
like in the Prêt-a-Voter Scratch & Vote ballot: verify the scratch surface, detach and discard
it, and scan the remainder. As previously, this remaining half does not reveal how Alice
voted, which means the election official can take all the necessary care to examine the ballot
without risking a privacy violation. Again, this remainder serves as Alice’s receipt.

4.6 Threat Model

We consider various threats and how Scratch & Vote handles them. We cover the threats
thematically rather than chronologically, as some threats pertain to multiple steps of the
election lifecycle.

133

Scan &
take home

Adam - a
Bob - b

Charlie - c
David - d

Figure 4-12: Casting a Punchscan Scratch & Vote ballot. An election official verifies that
the scratch surface is intact, then tears it off and discards it in view of all observers. The
remainder is scanned and cast. Alice then takes it home as her receipt.

4.6.1 Attacking the Ballots

The first obvious target of S&V is the creation of malicious ballot. We consider the various
parties that might be involved in performing this attack.

Election officials. An election official might create bad ballots in two ways: a completely
invalid ballot or, more perniciously, a valid ballot that does not match the human-readable
candidate ordering. In either case, the first line of defense is the voter cut-and-choose: only a
small number of such ballots can go undetected, since half of them will get audited randomly.
In the case of completely invalid ballots, the verification is much more stringent: election
officials would have to answer for certified ballots that do not have a proper NIZK proof,
and only valid ballots can have proper NIZK proofs.

External parties. External parties may wish to introduce fraudulent ballots, most likely
as a denial-of-service attack against voters at certain precincts, or, by vastly increasing
the number of complaints, as a denial-of-service attack against election officials. These
problems are thwarted by the certified ballot list. The moment an election official discovers
an uncertified ballot, he can begin an investigation. If officials fail to catch the problem, the
voters’ helper organizations will. Consequently, fraudulent ballots should be caught before
the voter enters the isolation booth.

Collusion between officials and voters. A single maliciously crafted ballot could alter
the count significantly in the homomorphic aggregation. This is particularly problematic if
the officials collude with a voter who won’t perform the proper cut-and-choose audit because
he is very much interested in using the fraudulent ballot. Once again, the NIZK proof on the
bulletin board prevents this from ever happening, providing a universally verifiable guarantee
that each cast ballot only contributes a single vote to a single candidate for each race.

134

4.6.2 Attacking Ballot Secrecy

Another obvious target of attack is the secrecy guaranteed by the ballots, especially as the
entire protection of a given ballot is contained within the ballot itself.

Leaky Ballots. Election administrators could leak information about the ballot candidate
ordering using the ciphertext randomness. This threat is somewhat lessened with the use
of seed-based randomness, as long as a portion of the seed is public and selected after the
individuals ballot seeds are picked. However, this topic requires further exploration.

Tampering with the scratch surface. Eve, a malicious voter, may attempt to remove
the scratch surface from her ballot, read the randomization values, and replace the scratch
surface undetected. This would allow Eve to sell her vote, given that her encrypted vote will
be posted on the bulletin board, along with Eve’s full name, for all to see and audit. We
must assume, as a defense against this threat, that the scratch surface is sufficiently tamper-
proof to prevent such an easy replacement that would fool an election administrator; this
assumption appears quite reasonable. Real-world experiments will be necessary to determine
what level of tamper-proofing is feasible.

Ballot face recording. One significant weakness of all pre-printed paper-based crypto-
graphic voting, including Scratch & Vote, is that election officials who produce the ballots
may record the ballot ciphertexts and candidate orderings, thus violating ballot secrecy.

Even in Prêt-a-Voter and Punchscan, which use multiple authorities in a mixnet setting,
the last mix server knows the final candidate ordering. It may be worthwhile to explore clever
ways of distributing the ballot generation mechanism. The recent proposal of Ryan and
Schneider [149] addresses this threat with on-demand ballot printing, though this requires
significantly more deployed technology at the precinct level. The best solution may be
process-based, where machines produce ballots and immediately forget the randomness used.

The ballot face recording problem exists for more than just election officials: those who
transport ballots may have a chance to record the correspondence of candidate ordering to
barcode. We note, again, that Prêt-a-Voter and Punchscan suffer from the same problem.
One promising defense in all cases is simply to hide some portion of the ballot such that it
can no longer be uniquely identified during transport. For example, individual ballots can be
sealed individually in opaque wrappers. Alternatively, the 2D-barcode can be hidden under
opaque plastic that can be peeled off prior to voting. If the printed barcode is particularly
resilient, one can even use an additional scratch surface.

Casting. At ballot casting time, election administrators must ensure that the cast ballot
has not revealed its randomization values, for this would enable vote selling. Of course,
this verification must be performed without violating ballot secrecy in the process. Our
proposal specifically addresses this threat: an election official only sees the encrypted half
of the ballot. He can take all the necessary care to verify that the scratch surface is intact,
while ballot secrecy remains protected.

135

A threat remains: official-voter collusion. If an election official and voter collude to
preserve, rather than discard, the scratch surface, the voter may be able to reveal his selection
to the official (and later to other parties.) Sufficient observation of the voting process by
competing political parties should address this issue. S&V further mitigates this risk with
ballots created such that the “missing half” is generic. Thus, voters can easily pick up
alternative “missing halves” to claim they voted differently, and a coercer may not be certain
whether the claimed half is, indeed the proper decryptor half for Alice’s ballot.

Coerced Randomization. Recently, a new threat to paper-based voting systems has
been pointed out: coerced randomization [30]. In this attack, a coercer wishes to “reduce to
random” Alice’s vote. Consider, for example, the situation where Alice votes in a precinct
that historically favors one political party by a wide margin. Such precincts are quite common
in the United States. A coercer can ask Alice to vote for the first candidate in the list, no
matter what that candidate is. The coercer can check this by viewing the bulletin board
under Alice’s name or voter identification number. Of course, the coercer won’t know for
sure who Alice voted for—in fact she may, by sheer luck, have obtained a ballot where this
position coincides with her preferred choice—but he will have effectively reduced her vote
to random. With enough voters, the coercer can statistically reduce the number of votes for
the party typically favored by this precinct.

By way of countermeasure, one can offer the voter enough ballot ordering selections that
she can pick a ballot where the prescribed behavior fits her personal choice. Unfortunately,
the attack can become much more complex: for example, the prescribed behavior may involve
voting for a position on the ballot that depends on the ballot identifier. This issue merits
additional research. However, we note that Scratch & Vote does not make this problem any
worse: Punchscan and Prêt-a-Voter are equally vulnerable.

4.6.3 Attacking the Bulletin Board and the Tally

Much of the security of the tallying process depends on the bulletin board. An attacker may
want to insert fraudulent data, for example to change the election parameters or replace an
honest citizen’s cast vote. Digital signatures on all posted data can prevent such attacks,
assuming that a minimal PKI is deployed to certify the public keys of election officials. Public
observers of the bulletin board content, including helper organizations, can then detect bad
data.

Alternatively, an attacker may want to suppress information from the bulletin board. In
particular, the bulletin board server itself may suppress information. To protect against this
attack, the bulletin board should be implemented by multiple servers. These servers may
run a distributed Byzantine agreement protocol to ensure consistency of content [110], or
observers may simply rely on cryptographic signatures of the content and the redundancy
of the servers to catch any server the suppresses content.

Given a secure bulletin board implemented as above, attacks on the tallying process can
be prevented, because every step is verified with proofs. Ballots are proven well-formed

136

by the NIZK proof on the bulletin board, any observer can re-perform the homomorphic
aggregation, and the final tally decryption is also proven correct.

4.7 Conclusion

We have proposed Scratch & Vote, a simple cryptographic voting system that can be im-
plemented with today’s technology, at very low cost and minimized complexity. Most im-
portantly, ballots are self-contained: any helper organization, or the voter herself, can audit
the ballot before casting her vote and without interacting with election officials. Given its
intuitive use of scratch surfaces, Scratch & Vote may prove particularly useful in providing
an accessible explanation of the power of cryptographic verification for voting systems.

137

138

Chapter 5

Casting a Verifiable Secret Ballot

This chapter combines two separate works: Ballot Casting Assurance [6], presented in sec-
tions 5.2 and 5.3, and Assisted-Human Interactive Proofs [17], presented in sections 5.4–5.7.
Section 5.1 provides an introduction to the concepts and some background. This work was
done in collaboration with C. Andrew Neff.

5.1 Introduction

How can a voter be certain that her intent was correctly captured by the “voting system?”
She may be certain that she checked the right checkmark, touched the right portion of the
screen, punched the right hole, or otherwise filled out her ballot correctly. However, her
ballot may get lost, misread, or, in the worst of cases, maliciously removed from the tally,
all without her knowledge.

In Chapter 1, we saw, at a high level, how cryptography presents solutions to this chal-
lenge. Votes are encrypted and placed on a bulletin board, and Alice, the voter, receives
proof that her vote was correctly encrypted. Then, officials cooperate to anonymize and
tally the encrypted ballots. Again, proofs of correctness are provided so that anyone may
verify this tally.

However, typical cryptographic proofs, e.g. Chaum-Pedersen [37], assume that the ver-
ifier, in this case the voter, is able to perform a reasonable amount of computation. When
the verifier is human, cryptographic protocols have often assumed that she can use a trusted
computing device to perform the verification on her behalf. In the case of voting, however,
this solution is unacceptable: the entire correctness of the election would then rely on the
trustworthiness of this device and its manufacturer.

This chapter first defines the concept of ballot casting assurance. At a high level, a voting
system with ballot casting assurance is one that gives Alice direct assurance that her selection
became, as intended, an input into the tallying process. We show that the notion of “cast as
intended,” while it may have been intended to represent this same concept, does not, in its
present common usage, imply the end-to-end verifiability we truly seek. We consider how,
with ballot casting assurance, we can begin to work on not just the detection of errors, but

139

their correction.
Then, we delve into technical detail. We provide a definition of interactive proofs when

the verifier is human. We call these proofs Assisted-Human Interactive Proofs (AHIPs) and
emphasize that, in the context of voting, an assistant helps the voter but does not learn her
vote. We consider MarkPledge, Neff’s [29] voter-intent verification protocol, and show that,
with a small adjustment, it successfully fulfills the requirements of our definition. Then, we
present a significantly more efficient scheme based on the same principles, and once again
show that it fits the definition.

Human Limitations. There is an online card trick which fools most people [146]. In this
trick, 5 playing cards are displayed on screen, and the player is asked to privately choose
one, never indicating this choice to the computer. The computer then asks a number of
unrelated questions. Eventually it displays 4 cards and claims “I have read your mind and
removed the card you picked from the set.” The trick succeeds because the 4 cards displayed
on the last screen were never present on the first screen, but most people don’t notice, as
they only remember the one card they chose, not the cards they set aside. If we are to design
a protocol that humans can verify, we must thus ensure that the computation requirements
are truly minimal!

This Introduction. In this extended introduction, we present an overview of ballot casting
assurance in the context of cryptographic voting system verification. We also briefly review
the notion of an interactive proof. Then, we present an intuition for our definition of Assisted-
Human Interactive Proofs, and an overview of our two implementations, first a small change
on Neff’s existing scheme, then a new scheme. The rest of this chapter provides complete
technical details, including the exact setup for ballot casting assurance, the precise definition
of AHIPs, the detailed protocols descriptions of the two schemes, and the complete proofs
of their security according to the AHIP definition.

5.1.1 Verifiability

The key complication of verifiable voting is due to the secret ballot, as described in Chapter 1.
With secrecy, auditing becomes significantly more difficult: how can we verify that the votes
were properly captured and tallied while ensuring that their secrecy is maintained? However,
there are techniques for verification. In particular, the concept of universal verifiability has
been discussed in the literature for more than 10 years.

Universal Verifiability. Since the early 1990s, many cryptographic voting protocols have
been proposed to provide universal verifiability [151, 46, 1, 124]. In these schemes, any
observer can verify that only registered voters cast ballots and that cast ballots are tallied
correctly. Universal verifiability uses cryptography to restore the bulletin board of yore.
Ballots are encrypted and posted along with the voter’s plaintext identity. Universal verifi-
ability thus provides a public tally, patching a large portion of the auditability hole caused

140

by the secret ballot.

Ballot Casting Assurance. Universal verifiability does not provide complete auditability.
In addition to knowing that all votes were correctly tallied, Alice would like direct verification
that her vote was properly cast and recorded into this tally. We define this principle as ballot
casting assurance and argue that it, too, fills an auditability gap left by the secret ballot.
Interestingly, to the average voter, ballot casting assurance may be more intuitive than
universal verifiability, for it is a simple, individually relevant question: independently of all
other issues, is Alice certain that her vote “made it?”

Ballot casting assurance is effectively the combination of two existing voting protocol
concepts: that ballots should be cast as intended, and recorded as cast. The added benefit
of ballot casting assurance is two-fold:

• End-to-end verification: Alice only cares that the recorded ballot matches her in-
tention. Verifying the in-between “ballot casting” is an artifact of how certain voting
schemes are verified, and need not be built into a definition of voting system security.

• Direct verification: Alice wants direct, not mediated, verification of the correct
recording of her vote into the tally. In particular, if Alice must trust election officials
to eventually record her vote, the scheme does not provide ballot casting assurance.

Incoercibility. The difficulty of accomplishing ballot casting assurance comes from ballot
secrecy, in particular the incoercibility requirement. Even if Alice wants to sell her vote, the
protocol should ensure that she cannot succeed with any reasonable probability. Achieving
a realistic combination of incoercibility and verification is the ultimate goal of schemes that
support ballot casting assurance.

The Possibility of Failure Recovery. Once ballot casting assurance enables this direct
and immediate verification, a new possibility arises: if Alice determines that her vote has not
been correctly recorded, she can immediately complain and rectify the situation. Thus, ballot
casting assurance is fully achieved when Alice can vote, verify, and revote until verification
succeeds.

5.1.2 Interactive Proofs & Receipt Freeness

In an interactive proof, a prover P interacts with a verifier V to demonstrate that a string
x has a certain property, e.g. given x = (c, m, pk), c is an encryption of m under public key
pk . More formally, the assertion is that the string x is in some NP language L. Certain
proofs are said to be zero-knowledge, in which case V learns nothing more than the truth of
the assertion that x ∈ L. A slightly weaker type of proof is the witness-hiding proof [62],
where V may learn some information, as long as she doesn’t learn a new witness w to x’s
membership in L. Thus, if c is the encryption of m with randomization value (and thus

141

witness) r, V should not learn r in either a witness-indistinguishable or a zero-knowledge
proof.

In the voting setting, m is Alice’s plaintext vote, and c is the encryption of m, destined
for the bulletin board. The proof protocol should convince Alice that c encrypts m, yet Alice
should be unable to convince a third party of this fact, even if she tries. In other words, Alice
cannot learn r. This property is often called receipt-freeness, and a number of definitions
and implementations exist in the literature (as reviewed in Chapter 2).

In most known interactive proof protocols, P and V are assumed to be computers, mod-
eled as probabilistic polynomial-time (PPT) Interactive Turing Machines (ITM). When
one of the parties, Alice, is “only human,” a number of protocols suggest providing her
with a trusted computing device that performs the protocol on her behalf. This solution is
inadequate for voting, as it simply shifts trust from the election officials to the device manu-
facturer. We need to provide Alice with an unmediated proof of correct ballot casting, not one
that depends on the trustworthiness of a device. Because of the ballot secrecy requirement,
this unmediated proof must be also non-transferable.

To date, this practical setting, with Alice the human verifier, has not been thoroughly
modeled. Thus, the handful of proposed protocols in this vein [40, 41] have not been proven
secure.

5.1.3 Assisted-Human Interactive Proofs

We introduce Assisted-Human Interactive Proofs (AHIPs), where a human verifier, Alice,
directly interacts with a machine prover which convinces her of some assertion. As the end
of the interaction, Alice receives a secret receipt from the prover, which she provides to a
machine assistant. Using both the information she gained in her private interaction with
the machine prover and this third-party assistant, Alice can decide whether the protocol
succeeded or not. AHIP protocols are a crucial component of voting systems that support
ballot casting assurance.

The interesting security property we propose concerns this newly-introduced assistant.
Intuitively, the verifier learns (or already knows) some information that the assistant should
not learn. In particular, the receipt obtained by the verifier should not reveal this crucial
information. Even if Alice, the verifier, is willing to reveal it, she should not be able to
convince the assistant with any reasonable probability. This security property should hold
across the entire range of possible verifiers, from highly simplistic to fully PPT -capable. In
the context of voting, this secret receipt hides Alice’s vote, even if she is willing to be coerced,
and even if she surreptitiously brings computing equipment with her in the voting booth.
Thus, the protocol provides a secret receipt, but, in the original terminology, it remains
receipt-free.

Model. We model the prover as a PPT ITM P . For notation clarity, we model the limited
(human) verifier as two ITM s: Vint and Vcheck. The Vint component interacts with P , while
Vcheck is a non-interactive “checker” component. The initial setup is identical to typical
interactive proofs: P interacts with Vint to prove that string x is in language L.

142

We introduce A, the assistant, another PPT ITM , that the verifier consults after its
private interaction with the prover. The Prover P outputs a secret receipt of some kind,
denoted receipt〈P ,Vint〉. Together, Vcheck and A determine the outcome of the protocol: Vcheck

checks receipt〈P ,Vint〉 against the output of Vint, while A checks its internal consistency. The
protocol succeeds if both Vcheck and A declare success. Thus, the protocol is complete if both
Vcheck and A accept when everyone is honest and x ∈ L. The protocol is sound if, with some
probability, either Vcheck or A declares failure when x �∈ L, against any prover P∗. Figure
5-1 represents this setup.

Private-Input Hiding. Interesting AHIPs produce receipts that hide some portion of
the prover’s assertion while still enabling A to determine the validity of the full assertion.
We model this with an input string x composed of a public component xpub and a private
component xpriv . The receipt, denoted receiptV〈P ,V〉, may yield xpub , but should hide xpriv ,
at least computationally. More specifically, for every verifier willing to reveal xpriv , there is
another verifier that, for any other x′

priv , falsely claims the same xpriv , such that both verifiers
are indistinguishable. It is worth noting that a distinguisher has access to the prover’s receipt
and any verifier output.

We frame this private-input-hiding property as an indistinguishability property from the
point of view of the coercer. In the context of voting, this indistinguishability provides
incoercibility. More specifically, consider Sally, a willing vote seller, and David, a double-
crossing vote seller. Sally acts according to her coercer’s requests. David pretends to act
according to his coercer’s requests, but eventually double-crosses him and votes against the
coercer’s preferred candidate. Private-input hiding guarantees that, no matter what strategy
Sally adopts to convince her coercer that she has complied with the vote-selling “deal,” David
can adapt his strategy so that he can make a similarly convincing argument, even though,
in fact, he did not comply.

P
receipt

3
vstate

receipt vstate
2

1

A() = TruereceiptVint

Vcheck

(
,

)
= True

Figure 5-1: (1) Prover P and the Verifier’s interactive component Vint interact in private, with P
generating a secret receipt and Vint producing some internal state. (2) Vcheck, the non-interactive
component of the verifier, checks the receipt against the internal state produced by Vint. (3) A
checks the receipt for internal consistency.

AHIP Languages. For the purpose of this work, we consider a class of languages we call,
for lack of a better name, AHIP Languages. These languages provide a number of properties

143

which make them particularly interesting for the development of AHIP proofs:

• strings x in the language can be parsed as pairs (xpub , xpriv),

• for each xpub , there is at most one xpriv such that (xpub , xpriv) is in the language, and

• xpub can be sampled in polynomial time given xpriv , such that (xpub , xpriv) ∈ L.

In particular, languages of proper ciphertext/plaintext pairs make excellent AHIP languages.
In voting, these pairs are the encrypted-ballot/plaintext-ballot pair, where membership of
the pair indicates a properly encrypted ballot.

As a result of this definition, the public input hides the private input only computation-
ally: given xpub , a computationally-unbounded algorithm can simply try all possible xpriv

values of the proper length (given the security parameter) to discover the single matching
value. Thus, our AHIP proofs are inherently constrained: they, too, can only hide the private
input computationally.

We believe this is, in fact, a natural consequence of the purpose of these protocols. If the
protocol were to statistically hide the private input, the verifier would need an additional
mechanism to ensure that her receipt indeed corresponds to the specific xpriv claimed in
her private interaction with the Prover. It is unclear how useful such protocols would be,
especially for voting: Alice would not be certain that her receipt indeed encodes her vote.
This is consistent with the observations and proofs of Canetti and Gennaro [33] regarding
incoercibility.

Witness Hiding. We show, in Theorem 5-1, that if a protocol is private-input hiding for
an AHIP language, then it is also witness hiding. At a high level, if a corrupt verifier can
learn a witness, then it can simply provide this witness to the Assistant, which is irrefutable
evidence of the value of the private input. We note that the inverse implication is not true:
a typical witness-hiding proof generally reveals the complete input string or requires it to be
public to begin with, thus revealing the private input as well.

5.1.4 Implementing AHIP Protocols for Ballot Casting

In sections 5.5 and 5.6, we provide two AHIP protocols for ballot casting; here, we present
an overview and introduction to this material.

In both protocols, the verifier is only expected to compare very short strings. The first
protocol, BitProof, is based on an existing protocol due to Neff [29], slightly modified to
ensure security under our definition. The second, BetterBitProof, is a new, more efficient
protocol that accomplishes the same goal with short receipt representation and minimal
round complexity. Both are proven secure against our new definition. First, however, we
describe a high-level, black-box-component implementation of an AHIP proof to illustrate
the need for specific, optimized protocols.

144

The Voting Protocol. For voting purposes, we wish to build an AHIP protocol that lets
the voting machine demonstrate to Alice, the human voter, that a given ciphertext correctly
encodes her candidate choice, represented as index j out of z possible options. Note that
this ciphertext may be generated in any number of ways, as long as the prover knows a
witness that proves the ciphertext’s decryption, for example the randomization value of the
ciphertext. The protocol must hide this witness from the voter, and, in addition, it must
hide the index j from the assistant. More formally and specifically, given a public key setting
(pk , sk), an index j ∈ [1, z], and ciphertexts c1, c2, . . . , cz, P proves that:

• cj = Epk(1), and
• ci = Epk(0),∀i �= j.

In the AHIP language, the public input xpub is (pk , c1, c2 . . . , cz), the private input is j, and
the witness is (r1, r2, . . . , rz), the set of randomization values for ciphertexts (c1, c2, . . . , cz)
respectively. We call this a proof of integer-in-range plaintext.

In this work, we assume that the list of ciphertexts is always properly formed: exactly
one ciphertext will decrypt to 1, while all others will decrypt to 0. The key to the proof
is demonstrating that the j’th one decrypts to 1. This assumption is reasonable, as there
are numerous zero-knowledge techniques for proving the ciphertext’s valid form that can be
checked entirely by the assistant without revealing j. This proof can be performed in parallel
with the normal AHIP proof, with details printed on the receipt for the Assistant to check:
Alice doesn’t need to participate. We review this idea in section 5.7.

Construction from Black Box Components. The proof of integer-in-range plaintext
can be implemented using black-box cryptographic components, specifically using any public-
key cryptosystem with a special honest-verifier zero-knowledge, 3-round proof of plaintext
equivalence. Recall that special honest-verifier zero-knowledge proofs, introduced by Cramer
et al. [44], provide overwhelming soundness with transcripts that can be simulated entirely
from the challenge chal. We assume here that the values 0 and 1 are in the plaintext space of
the cryptosystem. If they are not, we can simply use two values m0 and m1 in the plaintext
space that “play the role” of 0 and 1, respectively. Then, using these components:

1. The prover demonstrates to the verifier, using the SHVZK protocol, that Epk(bj) is
the encryption of 1 under Epk . The verifier provides her challenge chal in the normal
execution of the protocol, after the prover’s first message.

2. The prover uses chal to simulate proofs that the other bit encryptions (ci)i�=j are also
encryptions of 1. These simulations are possible because the proof protocol is special
honest-verifier zero-knowledge. These simulated proofs are “lies,” of course, since the
ciphertexts in question are actually encryptions of 0.

3. The receipt is then composed of all the proof transcripts.

The assistant verifies all transcripts, certifying that all of them are correct. Only the
verifier—who saw that only the proof for index j was correctly, sequentially performed—
knows which transcript indicates a true proof.

145

Real-Life Constraints. The black-box-based construction is useful to understand the
general structure of our AHIP protocols for proving an integer-in-range plaintext. However,
it is critical to note that a typical, human verifier isn’t powerful enough to successfully execute
this generic protocol.

Consider, specifically, the bit length of the SHVZK protocol messages: they are simply
too long for a human verifier to remember given any reasonable security parameter. The bit
lengths of the prover’s first message and verifier’s challenge must be small enough for the
verifier to remember and compare: 3 or 4 ASCII characters at the most. It isn’t possible to
achieve such short messages without a specialized proof construction. Note in particular that
one cannot arbitrarily restrict the domain of prover messages, since this restriction cannot
be respected at simulation time, when the prover’s first message is computed as a function
of the extracted challenge.

High-Level Construction of our Specialized Protocols. The central idea in both of
our proposed proof protocols is to have the prover generate a specially-crafted ciphertext,

i = BitEncpk(bi), for each ci = Epk(bi) in the original public input. The special form of
BitEncpk(bi) enables a proof protocol that lends itself to particularly short prover and verifier
messages in all cases. Soundness is optimally high given the size of the verifier challenge,
and the security of the ciphertexts remains overwhelmingly high. The Prover P also proves
that i encodes the same value as ci, a proof which can be entirely checked by the assistant
A and which, surprisingly, requires no additional verifier challenge.

Communication Model We consider two mechanisms for the Prover to communicate
with the Verifier. First, the receipt provides a permanent, append-only channel: once the
prover prints some data, the verifier can see it, and the prover cannot modify it. This receipt
will eventually be handed to the Assistant, of course, so it cannot be the only means of
communication for the Prover, since the Verifier is expecting to obtain assurance regarding
the private input which the Assistant shouldn’t learn. Thus, in addition, the prover has a
private channel to the verifier whose content is not printed on the receipt. This is likely to
be the screen of a computer in some isolation booth. Anything sent over this private channel
must take into account the severe computational limitations of the verifier.

In the other direction, the verifier is expected to have some basic data entry mechanism
for short strings. This may even be a simple barcode reader, as the verifier does not need to
communicate much other than a challenge string, which can be easily selected out of a set
of pre-printed challenge tickets.

The BitProof Protocol. We now give a brief overview of our first proposed protocol, based
heavily on Neff’s construction. Consider α the bit-length of a string that a human verifier
can easily compare, e.g. 24 bits (4 human-readable ASCII characters). Consider the original
cryptosystem (G, E ,D) used to encrypt the public input (c1 = Epk(b1), . . . , cz = Epk(bz)), and
assume this cryptosystem is additively homomorphic, e.g. Exponential El Gamal, where, if
pk = y = gx mod p:

146

Epk(m; r) = (gr, gmyr).

Note that it is no problem to use Exponential El Gamal here, because we only per-
form decryption on a limited plaintext space—usually only 1 and 0: no discrete logarithm
computation will be required. We simply care about the additive homomorphism. Thus:

1. The prover prepares special bit-encryptions (1 = BitEncpk(b1), 2 = BitEncpk(b2), . . . , z =
BitEncpk(bz)) with the BitEnc algorithm and the same public key pk , as follows:

BitEncpk(b) = [u1, v1], [u2, v2], . . . , [uα, vα]

where all the ui and vi values are encryptions of either 0 or 1, using Epk . If b = 1, both
elements of each pair encrypt the same bit : (D(ui),D(vi)) = (1, 1) or (0, 0). If b = 0,
both elements of each pair encrypt opposite bits : (D(ui),D(vi)) = (1, 0) or (0, 1). Note
that, given a bit b, there are two plaintext choices for each pair within BitEnc(b). All
pairs are not the same: the exact selection of bits is decided by the randomization
value provided as input to BitEnc by the Prover. See Figure 5-2.

2. The prover prints the sequence (1, 2, . . . , z) on the receipt (which the verifier can
see) and privately sends a string ChosenString to the verifier, which is the concatenation
of the plaintext bit choices for the bit encryption j. Recall that bj = 1, and thus that

both elements of each [u
(j)
k , v

(j)
k] pair for all k ∈ [1, α] encrypt the same bit. It is these

bits, of which there are α since there are α pairs of u’s and v’s, which are concatenated
into ChosenString. Note how ChosenString is of length α bits, which is short (4 ASCII
characters.)

3. Then, the verifier provides an α-bit challenge string chal. The bits of the challenge
indicate for which half of each [u, v] pair the Prover should reveal the corresponding
plaintext. For example, if chal = 011000, the Prover opens up 1 for all bit encryptions,
all u1, all v2, all v3, all u4, all u5, and all u6. This reveals an α-bit string for each index of
the z bit encryptions, 1, 2, . . . , z. For j, the challenge should not affect the revealed
string, since both elements of any given pair encrypt the same bit: the revealed string
should be exactly ChosenString, the value sent by the Prover in the first message.
In addition, the homomorphic property of E allows the Prover to quickly prove that
BitEnci and ci have the same plaintext without involving the verifier (details in Section
5.5).

4. For all other bit encryptions (i)i�=j, the result is effectively a random α-bit string which
depends on the initial random choices of the prover and the Verifier’s random challenge.
The Prover can thus complete the simulation for these other bit encryptions by setting

1By opening up, we mean here that the Prover simply reveals the randomization value with which he
encrypted the ciphertext in questions, thereby revealing the plaintext and the witness of encryption. These
randomization values are printed on the receipt.

147

0 1 1 0 1 0. . .

1 1 0 0 1 1. . .

BitEnc(0) =

BitEnc(1) =

chal = 1 0 1 1. . .

String(0)
=

String(1)
=

1 0 0 0. . .

1 0 0 1. . .

1

0

= Enc(1)

= Enc(0)

10

00

Figure 5-2: The BitEnc operation, where each boxed bit b indicates Epk (b). Note how chal indicates
which encrypted bits to reveal: a 0-bit indicates that the left half of each pair should be opened,
while a 1-bit indicates that the right half of each pair should be opened. Note also how String(0)

and String(1) are thus constructed from the selected, thickened boxed bits.

String(i), his first message in the proof of i and the equivalent of ChosenString for that
proof’s transcript, to this now-revealed string.

5. The bit-encryptions are all printed on the receipt, as is the challenge, the strings
String(i), and the revealed randomization values. Only ChosenString = String(j) was
truly committed to ahead of time to the Verifier, and the Verifier need only remember
this one α-bit string and check that the same string appears next to index j on the
receipt. The soundness of this protocol is (1 − 1

2α), and the size of the bit encryptions
(and thus the receipt) is linear in α (and κ, the security parameter).

Efficient Implementation. We also provide BetterBitProof, an alternative implementa-
tion of the same proof with the same user interface, using an optimized specially-crafted
cryptosystem BetterBitEnc. The size of each bit-ciphertext is constant instead of linear, as-
suming α < κ where κ is the security parameter. The bit encryption is performed in SO(2, q),
where each bit is represented as a 2-vector element, and each vector is then element-wise
encrypted using exponential El-Gamal in a q-order subgroup. The most important aspect of
this implementation is its significant efficiency improvement in terms of receipt representa-
tion and required computation per ballot. Two El Gamal ciphertexts per candidate in the
prover’s first message and two El Gamal randomization values per candidate in the prover’s
third message suffice to achieve overwhelming soundness. The details of this protocol are
given in section 5.6.

5.1.5 Previous & Related Work

Humans and Basic Cryptography. In 1994, Naor and Shamir introduced visual cryp-
tography [121], a secret-sharing method that uses visual superposition as a kind of human
XOR. A number of improvements were proposed to improve contrast and usability [59, 60].
In 1997, Naor and Pinkas introduced visual authentication [120], a technique to help humans
authenticate computers using visual cryptography methods.

148

Chaum used visual cryptography to build one of the first encrypted voter receipt tech-
niques in 2004 [40]. He and others are continually improving this technique [41], which
provides the only known alternative to the scheme we propose here.

Humans and Interactive Proofs. The literature is rich with protocols that allow hu-
mans to securely authenticate to computer systems. For example, Hopper and Blum [91]
were the first to use the Learning Parity with Noise (LPN) problem as a basis for human
authentication, based on Blum et al.’s earlier LPN-related work [21]. Interestingly, the low-
computational-power constraint now applies to certain computing environments, like RFIDs,
which led Juels and Weis to define an LPN-based authentication system for RFIDs [102].

On another front, a plethora of works deal with a human proving to a computer that he
is, indeed, human. A large number of such protocols, often called CAPTCHAs (Completely
Automated Public Turing Test to Tell Computers and Humans Apart), use hard Artificial
Intelligence problems to exploit tasks that only humans can do efficiently, e.g. reading
garbled text. These were first formalized by Ahn et al. [170, 171].

AHIPs are, to our knowledge, the first formalization of an interactive proof where a human
being plays the role of the verifier as opposed to that of the prover. As both human-based
authentication and CAPTCHAs have been classified as HIPs, Human Interactive Protocols,
it makes sense to classify Assisted-Human Interactive Proofs as a third kind of HIP.

Receipt-Free Elections. Benaloh and Tuinstra first introduced and implemented receipt-
free voting [20]. Enhancements and variations were quickly proposed [151, 125, 129], under
the assumption of a private channel between the administrator and voter. Canetti and
Gennaro [33] showed how to accomplish incoercible multiparty computation without this
assumption. The voting literature is plentiful: a large number of receipt-free schemes have
been proposed [46, 90, 13], all of which assume a computationally capable voter. Some
schemes even achieve optimal ballot secrecy [106].

Assisted-Human Interactive Proofs are, to our knowledge, the first formal treatment of
receipt-free ballot preparation with a human voter without fully trusted hardware. Our
proposal requires a private channel between the voting machine and the voter.

5.1.6 Organization

In the first half of this chapter, we explore the concept of ballot casting assurance. Section 5.2
frames ballot casting assurance in the context of election auditing, including the well-known
concept of universal verifiability. Section 5.3 provides the logistical details of implementing
ballot casting assurance, assuming an AHIP protocol exists for the proof portion.

In the second half of this chapter, we explore the details of AHIP protocols. Section 5.4
presents the AHIP definition in detail, proves that an AHIP protocol is also witness-hiding,
and gives an overview of the generic structure of an AHIP protocol for voting. Sections 5.5
and 5.6 provide the details of our two implementations, including proofs that they fit the
definition provide in section 5.4.

149

1

2

3

Approach a helper organization of your choice,
and request a challenge ticket

This ticket will help you audit your vote once inside the booth.
Take as many challenge tickets as you like, from whichever
organization you choose.

Helper organizations (like the League of Women Voters) will
have stations at your polling site.

Enter the voting booth,
and follow the on-screen instructions.

Make your candidate selection. Don't hesitate to correct
your answers if you need to.

When you are ready to cast your ballot, select "CAST BALLOT".

Your receipt begins to print, and the
screen shows your confirmation code.

Remember the confirmation code displayed on the screen,
which corresponds to your candidate of choice. In the
displayed example, Mickey is the candidate of choice, and
34c7 is the corresponding confirmation code. Your candidate
choice and corresponding confirmation code will typically be
different.

Your Receipt

SCAN YOUR
CHALLENGE

TICKET

Notice how your receipt has begun printing. A barcode should
be clearly visible, as well as a message that says
"SCAN YOUR CHALLENGE TICKET."

ab54
challenge

ticket

Candidate choice:
"Mickey"

Confirmation Code:
34c7

Figure 5-3: Page #1 of Voter Instructions for the Ballot Casting Assurance / Assisted-Human
Interactive Proof protocols presented here.

150

Your Receipt

Ticket: ab54
Mickey: 34c7
Donald: dhjq
Goofy: 8489

SCAN YOUR
CHALLENGE

TICKET

ab54
challenge

ticket

ab54
challenge

ticket

4

5

6

Present your Challenge Ticket
to the Barcode Scanner.

The machine will scan your challenge ticket automatically,
much like a grocery store checkout.

Check your confirmation code and
your challenge ticket code.

Your Receipt

Ticket: ab54
Mickey: 34c7
Donald: dhjq
Goofy: 8489

SCAN YOUR
CHALLENGE

TICKET
The rest of your receipt will now print. Verify that

a) your challenge ticket matches (ab54 in our example)
b) the confirmation code next to your candidate of choice matches
("Mickey: 34c7" in our example)

If there's any discrepancy, notify an election official so you can
revote. Because you are the only person who has seen the correct
confirmation code for your candidate, no one else can determine
from your receipt for whom you have voted.

Let a Helper Organization of your choice
verify your receipt for you.

If your helper organization finds a problem with your
receipt, you should notify an election official to ensure
that you can revote.

Once you get home, you can also verify this receipt
using your own computer.

Figure 5-4: Page #2 of Voter Instructions for the Ballot Casting Assurance / Assisted-Human
Interactive Proof protocols presented here.

151

5.2 Auditing an Election

Alice

Bulletin Board

Tally

Result

helper
helper

helper

U
n

iv
er

sa
l

V
er

ifi
ab

ili
ty

Receipt

B
al

lo
t

C
as

ti
n

g
A

ss
u

ra
n

ce

Verification

Ballot Data Flow

Bulletin Board

Alice
Bob
Charlie

Bulletin Board

Intermediate
Computation

Anyone can verify the
proper processing of the

bulletin board data.

Figure 5-5: Auditing an Election—Ballot Casting Assurance describes how Alice can be certain
that her vote was recorded and posted on the bulletin board as she intended, while Universal
Verifiability pertains to the tallying process.

With the introduction of the secret ballot, the public lost the ability to directly audit an
election. Once Alice casts her ballot, she also hands off all verification ability to the election
administrators. Given the complete dissociation of voter identity and ballot content, even
election administrators are left with only crude mechanisms for verification: the dominant
measure of election reliability is the residual vote, which indicates only the difference between
the total number of votes cast and tallied.

High-level voting system verification goals have been explored in prior literature:

1. Cast as intended: the ballot is cast at the polling station as the voter intended.

152

2. Recorded as cast: cast ballots are preserved with integrity through the ballot col-
lection process.

3. Counted as recorded: recorded ballots are counted correctly.

4. Eligible voter verification: only eligible voters can cast a ballot in the first place.

With classic security processes and methods, it is unclear how to achieve all of these
verifiability tasks directly. Instead, current voting practices rely on delegating these tasks to
election officials.

Universal Verifiability. Over the last twenty years, many cryptographic schemes have
been developed to address the counted-as-recorded and eligible voter verification verification
tasks. These schemes are generally said to implement universal verifiability, as any observer
can verify that all collected ballots have been correctly anonymized, preserved, and tallied.

Generally, these schemes use an authenticated bulletin board, where ballots are posted
as ciphertexts together with the voter’s plaintext identity. Individual voters can verify that
their encrypted ballot is correctly posted on the bulletin board. All observers can check that
only eligible voters cast a ballot and watch the tallying process on encrypted votes, which is
usually implemented as an anonymizing mixnet or a homomorphic aggregation.

Ballot Casting Assurance. Ballot casting assurance fills the remaining auditability gap:
cast as intended and recorded as cast. How can Alice obtain verification that her intent has
been recorded appropriately? If she determines that her vote has been recorded incorrectly,
how can she rectify the situation? Were it not for the secret ballot, these questions could be
answered trivially.

Two important properties of ballot casting assurance should be emphasized:

• End-to-end verification: typical voting security analyses distinguish the properties
“cast as intended” and “recorded as cast.” This distinction is an artifact of a chain-
of-custody approach to verification, where each step must be independently verified.
Ballot casting assurance need not concern itself with this specific mechanism for veri-
fication. The requirement is end-to-end, from the voter’s brain to the bulletin board.

• Direct verification: Alice, the voter, should get direct and immediate verification
that her vote was correctly recorded. Mediating the verification via election officials,
or delaying the verification until it is too late for Alice to rectify the situation, is
insufficient.

Of course, the ballot secrecy requirement remains. Whatever verification is enabled by
ballot casting assurance, it must also be incoercible. Even if Alice wishes to sell her vote,
nothing she does should give her a significant edge in successfully convincing a third party
of how she voted.

A number of recent proposals, including Chaum’s visual cryptography ballot [40], its
variants [41] including PunchScan [66], and Neff’s encrypted receipt scheme MarkPledge,

153

offer solutions that address these requirements: it is possible to give Alice direct verification
of her vote without providing so much information that she can prove her vote to a third
party, all given conservative assumptions of the voter’s computational ability—i.e. we cannot
expect a voter to perform complex math. These schemes provide the cryptographic basis for
ballot casting assurance in a secret-ballot setting.

5.3 Ballot Casting Assurance

We now consider the voting environment required to achieve ballot casting assurance. We
leave the detailed AHIP protocol description for Sections 5.5 and 5.6, and assume, for now,
that such a protocol exists: Alice, the voter, privately interacts with a voting machine,
which provides a receipt that the Assistant can verify for Alice without learning her vote.
The goal is to provide Alice with immediate and direct verification that her vote was correctly
recorded, before she leaves the polling location. We note that, when this is achieved, failure
recovery by individual revoting becomes a possibility.

5.3.1 Setup

We consider that the election officials have properly generated (pk , sk), the election keypair,
using a typical threshold scheme so that no single party holds the secret key. All voting
machines have access to pk , as do all voters and observers.

Helper Organizations. We assume the presence of helper organizations at the polling
location. These organizations are political or advocacy groups, such that various opinions
and voter preferences are represented at a given polling location. These helpers do not have
access to any secret election information, only the public election parameters including pk .
They have some computing equipment at the location, though there is no need for network
access. Clearly, this setup is not realistic for all polling locations: in some cases where polling
locations are too small to support helper organizations, voters have to rely on helpers located
outside the polling location, where, if helpers detect an error, the complaint process becomes
more difficult.

These helper organizations play the role of the AHIP Assistant A. The worst a dishonest
assistant can do is claim a valid ballot to be incorrect; in this case, Alice can ask multiple
assistants to check her encrypted ballot. She can even check it herself once she gets home
and uses her home computer. If a disagreement occurs, the assistants must provide detailed
proofs of their judgment, so that election officials can determine who is providing incorrect
help.

The Voting Machine. The voting machine in our model presents a typical computer
screen interface. In addition, the machine has a scrolling receipt printer: as data is printed
on the receipt, the receipt is pushed out so that the voter can see the data as soon as it is

154

printed, even if the receipt is not yet complete. We assume that the printer cannot retract
the paper, erase or modify data in any way.

The voting machine is effectively the Prover in our model. It has two mechanisms for
“sending messages”: on its screen, or on the printer. In both cases, the human verifier can
see the messages. The receipt printing mechanism ensures that “sending a message to the
receipt” is effectively a commitment, since it cannot be undone.

We also assume that each voting machine generates a keypair for applying digital signa-
tures to each receipt it prints. The public keys of the voting machines should be collected and
certified by the appropriate election officials prior to the beginning of election day. Careful
planning of this process is required, though we note that, even for today’s optical scanning
and DRE voting machines, this operation should become standard practice.

Severely Limited Verifier. Alice, the voter, is severely computationally limited. We
assume that she can reliably compare or copy short strings, but nothing more.

Private Input and the Secret Receipt. Given m, Alice’s plaintext vote, and c, the
encrypted vote created by the voting machine, Alice expects a proof that (c, m) is a valid
ciphertext/plaintext pair under public key pk . In our model, m is thus the private portion of
the input string, while c is the public portion: since it is encrypted, there is no risk in revealing
it, assuming the cryptosystem is semantically secure. The scrolling receipt produced by the
voting machine is the receipt in the AHIP model.

The Honest Verifier’s Challenge. As we cannot always assume that a human will
generate a “random enough” string for our model, we expect Alice to obtain a challenge
ticket from one of her assistant organizations before she enters the isolation booth. This
challenge ticket has a number pre-printed on it, along with a corresponding optical bar code,
which represent the challenge string chal to be used in the proof inside the isolation booth.
To ensure the technical constraint that this protocol be simulatable (and thus AHIP), the
challenge ticket also includes a commitment to the challenge, commit(chal), with its own
corresponding optical bar code.

Note, however, that this process is only meant to help the voter pick random enough
challenges. It is in no way necessary for the model, and commit(chal) does not need to be
input to the machine until the appropriate moment in the protocol, after the encrypted vote
has been printed on the ballot. In addition, assuming an honest voting machine, the helper
organization cannot determine how Alice voted merely by crafting a special chal. Recall
that we assume, in this work, that the voting machine is not trying to leak Alice’s vote,
though, of course, we do want to ensure that the voting machine cannot encrypt Alice’s vote
incorrectly.

The Encrypted Ballot. Once Alice has selected her candidate, option j, the voting
machine produces c. In our setting, c is composed of values c1, c2, . . . , cz, one for each
candidate, where cj = Epk(1) and ∀i �= j, ci = Epk(0). We assume that the voting machine

155

produces a well-formed ballot, meaning that exactly one of the ciphertexts is E(1), and all
of the others are E(0) (Section 5.7 explains this assumption.) The ballot can then be used
in a mixnet setting (see Chapter 3.)

5.3.2 Ballot Casting

1. Alice consults a helper organization of her choice to obtain her “challenge ticket,”
which includes the committed challenge and the challenge itself.

2. In the isolation booth with the voting machine, Alice proceeds with her ballot selection
and verification. She uses her challenge ticket to provide commit(chal) and chal, using
an input device such as a bar code scanner. By the end of the process, Alice has a
physical receipt in hand, and she has verified that:

(a) the verification code next to her candidate of choice matches what she saw on
screen

(b) the challenge printed on the receipt matches the challenge on her challenge ticket.

In addition, the voting machine is now expected to digitally sign the receipt.

3. The voting machine immediately posts the encrypted vote along with Alice’s name to
the digital bulletin board.

4. Alice hands her receipt to a helper organization of her choice. The helper verifies that
the ballot has been correctly posted, that it is internally consistent, and that it is
correctly signed by the voting machine.

If the verification is in any way unsatisfactory to Alice, she can simply return to step
1 and vote again. When she does, her new vote replaces her old vote on the bulletin
board. The bulletin board maintains a history of all ballots cast by Alice, noting which
is the last one to be used for tallying.

Note that this revoting process is similar to current procedures for optically-scanned
ballots when the voter makes a mistake and requests a new ballot. As an added bonus
here, the history of revoting is kept, in case it ever becomes a source of fraud. In
particular, all votes produced by all voting machines are recorded to prevent one voter
from later attempting to replace her vote with that produced for another individual.

5. Once Alice is satisfied with her receipt and the verifications performed by various
helpers, she leaves the polling location with her receipt in hand.

6. At her discretion, Alice can leave a copy of her voting receipt with any number of
helper organization.

Note that, if it is too onerous to post immediately to the bulletin board and verify,
live, that the bulletin board has been updated, the process can be modified so that helper

156

organizations only check the voting machine’s digital signature. In this case, it might also
be useful to witness election officials verifying the signature, as they can be made liable in
case the ballot goes missing at a later point.

5.3.3 Complaint & Correction Process

After having left the polling location, Alice can check, using software she trusts—even soft-
ware she may have written herself – that her vote has been correctly posted and tallied. We
consider what happens if Alice finds that her ballot has gone missing from the public tally.
We consider, in particular, the possibility of late revoting. This process provides significantly
increased ballot casting assurance, though we note that it requires significant care to ensure
that no new weaknesses are introduced (See Section 5.3.5).

Before a prescribed complaint deadline (maybe 24 hours after polls close), Alice can
follow these steps:

1. Present her receipt and identification to the complaint center.

2. If the voting machine signature on the receipt is incorrect, the complaint fails and no
further action is taken.

3. If the receipt’s signature is correct, the encrypted ballot is compared to the claimed
encrypted ballot on the bulletin board. If it is the same ballot, then there was no
mistake, and no further action is taken.

4. If the signature is correct and the bulletin board shows a different ballot than the re-
ceipt’s, and no other voter’s cast encrypted ballot matches this submitted claim, election
officials should update the bulletin board to reflect Alice’s corrected vote.

5. If election officials refuse to update a vote, the voter may turn to a political helper
organization that can perform exactly the same checks as the election official and
submit a formal complaint (possibly using the press.)

One should assume that most voters will never care to verify and complain on their own.
Thus, as described earlier, Alice has the ability to simply hand her ballot to a verification
agent who can do all checks on her behalf. If this agent finds that Alice’s vote has been
mishandled, it may complain on her behalf.

5.3.4 Trust Assumptions

The tweaks we propose do not significantly alter the trust assumptions of typical crypto-
graphic voting schemes. We review these assumptions here, and explain what we expect
of the newly-introduced helper organizations. It is important to distinguish the two major
classes of malicious behavior: those which affect tally correctness, and those which affect
ballot secrecy.

157

Within ballot secrecy, it is also important to distinguish subliminal channel attacks,
where the election equipment and data violate secrecy, and side-channel attacks, where some
external equipment, e.g. a cell phone camera, is used to violate the privacy of the voting
booth. This latter class of attacks is extremely problematic in any election scenario, and we
do not attempt to address it here.

Voting Machines. The voting machine is not trusted for correctness. The proof protocol
ensures that the voting machine cannot cheat a single voter with more than very small
probability (10−6), which rules out a cheating voting machine having any noticeable impact
on the election. In the current model, the voting machine is trusted not to perform subliminal
channel attacks on ballot secrecy. The voting machine is expected to keep its secret key
private, as it, and its manufacturer, would be blamed for malicious uses of this key.

Bulletin Board. The bulletin board is not trusted : it is only a common conduit for authen-
ticated content from the voting machines. It is expected that the various helper organizations
will keep an eye on the bulletin board, including ensuring, via regular auditing, that everyone
sees the same view of the bulletin board. This can be performed using well-understood au-
diting techniques, including hash trees [141] or the more advanced authenticated broadcast
protocols [110].

Helper Organizations. We assume that at least one helper organization is honest and
running correct software. Some helper organizations may be dishonest for certain voters,
though it is expected that these organizations will be mutually distrusting, such that it is
highly unlikely that all organizations will be dishonest for a given voter. It is important to
note that, if a helper organization incorrectly verifies a ballot, the voter may easily consult
another organization, likely a competing political party. Thus, a helper organization takes
a big risk if it lies.

For ballot secrecy, the helper organizations are completely untrusted, as they may have
strong incentive to coerce voters. Note that, even if a helper organization provides the
“challenge ticket,” it cannot violate ballot secrecy.

Voter’s Home Software. For correctness, we assume that a small, but significantly non-
zero, fraction of voters will run the correct verification software. We assume that it is very
difficult for an adversary to target a particular voter at the polling location, corrupt her
helper organizations, and corrupt her home computer simultaneously. We assume that, even
if an adversary accomplishes this complex attack against one voter, it isn’t easily scalable to
more voters.

We assume that all voters are potential adversaries when it comes to coercion. We
note that, in any scheme, a voter may take a photo of her ballot using a camera-phone:
in Hong Kong in 2004, mainland Chinese residents were asked by authorities to have their
relatives mail them camera-phone pictures of their ballot [8]. This is the side-channel attack

158

previously mentioned, which no current voting system addresses, and which our proposal
does not exacerbate.

5.3.5 Threats

The verification, complaint, and correction processes significantly increase voter confidence.
At the same time, they open up new avenues for attack. With the trust assumptions defined
in the previous section, we now outline some possible attacks and approaches to countering
them. We do not attempt to address every issue: ballot casting assurance requires much
continued research, and we cannot expect to quickly solve all open problems. We also note
that, while these issues are important, they are generally less worrisome than the potential
for abuse in today’s unverified elections.

Incorrect Verification. A helper organization might act maliciously in verifying ballots
at the polling location, claiming that good ballots are bad. This may be a particularly useful
tactic for one political party to use in a precinct that is known to be dominated by another
political party. The system presented here attempts to mitigate such issues by ensuring
that anyone can perform all ballot verification tasks, thereby ensuring public oversight of the
system. A helper organization can be required to present objective, verifiable proof that a
ballot is malformed.

Refusal to Replace. During the complaint period, malicious election officials may delay
or even prevent the replacement of a ballot on the bulletin board, even when presented with
a valid voter complaint. To address this, the system once again ensures that anyone can
perform the ballot verification, which should enable a voter to escalate a complaint based
purely on publicly available data. One also notes that, with all ballots now encrypted, the
complaint process can be performed in the presence of mutually distrusting observers.

Abusive Replacement. An attacker may attempt to replace an honest voter’s ballot
during the complaint period. One should note that this is an entirely new threat given the
complaint-and-replace process. The system provides a first technical line of defense: the
bulletin board records all ballots produced by eligible voting machines. Bob cannot simply
use one of his overwritten ballots to replace Alice’s ballot, as any bulletin board observer
would detect this manipulation. The system further mitigates this risk by adding a strong
identification requirement to the ballot replacement process.

One might also consider legal and procedural disincentives, such as requesting signed
affidavits of ballot replacement by the complainant, as well as notifying Alice by mail that
her ballot was changed in order to enable fraud detection and investigation. This last measure
is particularly important to prevent a new kind of ballot box stuffing, whereby a malicious
election official might replace a number of ballots just before the close of the complaint
period.

159

Subliminal Channels. As detailed by Karlof et al. [104], the secret receipt’s randomness
provides a subliminal channel to a malicious voting machine that wish to leak the ballot
plaintext. It will be important to develop methods for removing these channels in future
work.

5.3.6 Other Implementations

Ballot casting assurance is implementable via other techniques than the one described here.

Chaum Receipts. Chaum’s visual cryptography receipts and related schemes—e.g. PunchScan—
offer similar functionality to MarkPledge. In particular, PunchScan [66] provides direct ver-
ification for individual voters with soundness 1/2: each voter splits the ballot in two, and
selects which layer to take cast. Information later revealed by election officials confirms the
correctness of the ballot form.

There is, of course, a significant soundness difference, as MarkPledge easily provides
1 − 10−6 soundness per voter, while PunchScan provides soundness of 1/2. However, in the
voting scenario, soundness of 1/2 is likely sufficient: only attacks that affect a tiny number
of ballots might realistically go undetected.

Thus, PunchScan, like MarkPledge, is a voting protocol that provides ballot casting as-
surance. One should note, however, that certain variants of this scheme, in particular the
early versions of Prêt-a-Voter [41], are slightly weaker: the cut-and-choose is performed by
election officials because it is logistically too complicated to be performed by voters. A re-
cent variation of the scheme [149] addresses this problem with on-demand printing of ballots
in the voting booth, though this change requires more complex equipment at the polling
location.

Current Systems. Current election systems, be they DRE, optical scan, or paper based,
do not provide ballot casting assurance, as they completely separate the voter’s identity
at the moment of ballot casting, preventing all future direct verification. Even election
administrators are limited in the verification tasks they can accomplish. Many types of
fraud—a relatively small number of stuffed or lost ballots—may go undetected. When an
inconsistency is detected, e.g. a high residual vote rate, the only possible recovery may be
to rerun the entire election.

The Impact of Cryptography. An interesting conjecture is that direct verification of
secret-ballot elections is only possible using cryptographic techniques. This conjecture should
be further explored, and, if found to be true, should provide strong motivation for significant
continued research in usable cryptographic voting techniques.

160

5.4 Model and Definitions

We now turn to the formal model of Assisted-Human Interactive Proofs. We begin with
some notation and math preliminaries. Then, we propose a definition of AHIP protocols
and describe the basic technique that underlies both implementations of the voting integer-
in-range plaintext proof. We describe these two implementations in the next two sections.

5.4.1 Notation

We model cryptographic protocol participants using the established convention of Proba-
bilistic Polynomial Time (PPT) Interactive Turing Machines (ITM). Each participant is
designated by a single calligraphic uppercase letter, e.g. B, whose initial inputs are specified
in functional notation, e.g. B(x, y).

The interactive protocol between two parties A and B, where A takes as inputs xA and yA

and B takes as inputs xB, is denoted 〈A(xA, yA),B(xB)〉. The output of party A is denoted
outputA〈A(xA, yA),B(xB)〉. The view of party B during the protocol execution, defined as
the ordered sequence of messages sent and received by B (not including its initial input), is
denoted viewB〈A(xA, yA),B(xB)〉. For a zero-knowledge definitional basis, we refer to [75],
and for witness hiding protocols, we refer to [62]. Note that we will denote A the assistant,
and Adv the adversary.

5.4.2 Setup

Consider a computationally-limited verifier, modeled as two ITM s: the interactive verifier
Vint and the non-interactive checker Vcheck. We stress that this separation of Vint and Vcheck

is for definitional clarity only: both ITM s taken together represent the same human Alice.
The usual setting initially applies: a prover P interacts with Vint to prove that a string x
has a certain property—e.g. it is a correct tuple (c, m, pk) such that c is the encryption of
m under the public key pk .

More formally, the assertion being proven is that the string x is in language L. Once
the interactive portion of the proof is complete, P outputs a secret receipt, denoted receipt,
while Vint outputs some internal state vstate, which simply represents the “communication”
between Vint and Vcheck (literally inside Alice’s brain). Vcheck performs basic consistency checks
between receipt and vstate. Then, a PPT -capable assistant A examines receipt and performs
further consistency checks, in particular those which Vint and Vcheck are computationally
unable to perform. The interactive proof succeeds if both Vcheck and A agree that it succeeds.

5.4.3 An Intuition

The Assistant should not learn as much as the Verifier. In particular, recall that, in a typical
zero-knowledge proof, the Verifier learns (or already knows) the common input string x and
receives a proof that x ∈ L. In our model, we split the common input string x into two
parts: x = (xpub , xpriv), with xpub the public input and xpriv the private input. The Assistant

161

will learn xpub , but should not learn xpriv , even though it is assisting the Verifier in checking
that the complete common input x = (xpub , xpriv) is in the language L. In particular, the
receipt obtained by the Verifier should not convincingly reveal xpriv , even if the Verifier is
willing to reveal it.

In the voting setting, which is our driving example, xpub is Alice’s encrypted vote, while
xpriv is its plaintext. Alice wants a proof that (xpub , xpriv) is a correct ciphertext/plaintext
pair: when her encrypted vote appears on the election bulletin board, she can be certain
that it correctly captures her intent. However, no assistant should receive solid proof of her
actual plaintext vote, xpriv , even if she is willing to sell her vote.

Private-Input Hiding. Intuitively, what does it mean for the receipt to hide the private
input, even if the Verifier is willing to reveal it? In the voting setting, this is the notion of
incoercibility, which has not been modeled in the human-verifier setting to date.

We propose that private-input hiding is a form of indistinguishability from the point of
view of a potential coercer, an approach which was noted in various forms by Benaloh and
Tuinstra [20], and Okamoto [129], and was particularly developed by Canetti and Gennaro
[33]. Specifically, a coercer should not be able to distinguish between two voters, Sally and
David. Sally (the “Seller”) receives a proof of private input xpriv , and tells the coercer
this value xpriv honestly. David (the “Double Crosser”) receives a proof of private input
x′

priv �= xpriv , but tells the coercer that his private input was xpriv , just like Sally. If the
protocol is private-input hiding, the coercer cannot distinguish between these two verifiers:
no matter how much evidence Sally presents, David can fake evidence for his receipt that is
indistinguishable.

Computational Hiding. In this work, we only consider computationally private-input
hiding AHIPs. In other words, we assume that the Sally/David distinguisher is a PPT
ITM . This is, in fact, required for the voting setting: the public input is the voter’s encrypted
ballot, and a decryption yields the voter’s plaintext ballot, which is the private input. If
the receipt were statistically private-input hiding, the receipt might not actually prove that
(xpub , xpriv) ∈ L: it might prove that (xpub , x

′
priv) ∈ L, which doesn’t match the requirements

of the voting scenario. This reasoning matches the proofs provided by Canetti and Gennaro
regarding the inherent limitations of the concept of incoercibility [33].

Thus, we assume that xpriv is uniquely defined by a given xpub , though it should not be
computable in PPT without additional secret information. Of course, given the indistin-
guishability requirement, there are many possible public inputs xpub for any given private
input xpriv . In the formalization of this concept, we consider the specific constraints on the
language for which we build proofs.

5.4.4 Formalization

We now consider a formal definition of Assisted-Human Interactive Proofs. As it is clear
that AHIP protocols are applicable to languages of a certain specific form, we first define

162

Assisted-Human Interactive Proof Languages (AHIP Languages), a class of NP languages.

Definition 5-1 (AHIP Language) An NP language L is an AHIP language if, given
strings x ∈ L of length polynomial in the security parameter κ, and witness w such that
RL(x, w) = 1:

• Elements are pairs: each element x is a pair: x = (xpub , xpriv). By xpub, we denote
the public input, and by xpriv , the private input.

• Pairs are sampleable: ∃SL ∈ PPT such that, ∀xpriv where ∃xpub such that (xpub , xpriv) ∈
L, if (xpub , w)

R←− SL(xpriv), RL((xpub , xpriv), w) = 1. The output of SL on input xpriv

is uniform over all values of xpub for which (xpub , xpriv) ∈ L.

• Pairs are unique by public input: ∀(xpub , xpriv) ∈ L, and ∀(x′
pub , x

′
priv) ∈ L,

xpub = x′
pub =⇒ xpriv = x′

priv .

• Public input hides the private input: ∀(xpub , xpriv) ∈ L, �BruteForceReveal ∈
PPT such that BruteForceReveal(xpub) = xpriv with more than negligible probability.

We are now ready to formalize the notion of an Assisted-Human Interactive Proof for an
AHIP Language as defined above.

Definition 5-2 (Assisted-Human Interactive Proof) Let:

• L be an AHIP language of strings x = (xpub , xpriv), with sampling algorithm SL and
corresponding relation RL, which can be described as a PPT circuit RelL.

• P be a PPT ITM representing the prover.

• (Vint,Vcheck) be a pair representing the honest verifier. Vint is interactive while Vcheck is a
deterministic function, both with strict computational limitations designated complimits.
V eventually outputs vstate, which Vcheck uses to check the receipt at the end of the
interaction.

• A be a polynomial-time algorithm representing the assistant.

•
〈
P(xpub , xpriv , w),Vint(xpub , xpriv)

〉
be an interactive protocol for proving membership

of (xpub , xpriv) in language L, with w a witness.

• receipt denote the “secret receipt” which P outputs after interacting with Vint.

Then
(
P , (Vint,Vcheck),A

)
is an Assisted-Human Interactive Proof for L if the following

conditions hold:

163

1. Completeness. If x ∈ L and all parties are honest, then, with overwhelming proba-
bility, both the Verifier and Assistant declare success.

Formally there exists a negligible function ν(·) such that, given security parameter κ,
∀(xpub , xpriv) ∈ L, w s.t. RL(x, w) = 1:

Pr
[
(receipt, vstate) = outputP,Vint

〈
P(xpub , xpriv , w),Vint(xpub , xpriv)

〉
;

bV = Vcheck(vstate, receipt) ; bA = A(receipt) :

bV = True ∧ bA = True
]

≥ 1 − ν(κ)

taken over the coin tosses of P, Vint, and Vcheck.

2. Soundness. If the input pair (xpub , xpriv) is not in the language, then, with probability
at least 1/2, either the Verifier or Assistant will fail for any Prover. Soundness could
be defined with overwhelming probability, but 1/2 suffices in a number of settings.

Formally, given security parameter κ, ∀(xpub , xpriv) �∈ L,∀ non-uniform PPT ITM P∗,

Pr
[
(receiptP∗ , vstate) = outputP∗,Vint

〈
P∗(xpub , xpriv),Vint(xpub , xpriv)

〉
;

bV = Vcheck(vstate, receiptP∗) ; bA = A(receiptP∗) :

bV = True ∧ bA = True
]

≤ 1

2

taken over the coin tosses of P∗, Vint, and Vcheck.

3. Private-Input Hiding. Even if the verifier is dishonest, the secret receipt does not
yield the private input. Phrased differently, for every corrupt verifier that tries to prove
the private input, there is another indistinguishable verifier who claims the same private
input even though his private input was different.

Formally, there exists a negligible function ν(·) such that, given security parameter
κ, ∀ non-uniform PPT Adv = (G∗,V∗, C∗),∃PPT W∗ with the same computational
abilities as V∗, such that:

164

Pr
[
(xpriv , x

′
priv)

R←− G∗(RelL) ;

(xpub , w)
R←− SL(xpriv) ;

(x′
pub , w

′) R←− SL(x′
priv) ;

b
R←− {0, 1};

(receiptb, vstateb) = outputP,V∗

〈
P(xpub , xpriv , w),V∗(xpub , xpriv)

〉
;

(receiptb̄, vstateb̄) = outputP,W∗

〈
P(x′

pub , x
′
priv , w

′),W∗(x′
pub , x

′
priv , xpriv)

〉
;

b′ = C∗(receipt0, vstate0, receipt1, vstate1) : b = b′
]
≤ 1

2
+ ν(κ)

Note that W∗ will use V∗ as a black box in most constructions. Note also that, to
prove that a protocol is realistically private-input hiding, one should not only prove the
existence of W∗, but also demonstrate a viable construction.

Private-input hiding implies that, if a voter has the computational ability to remember
the transcript of his interaction with the voting machine, then he can, with the same
computational ability, produce an alternative transcript for the same receipt. This
alternate transcript will be just as convincing as the real one.

Note also how G∗, the generator component of the Adversary, takes as input the cir-
cuit describing the language’s relation. For example, if L is the language of proper
ciphertext/plaintext pairs in a cryptosystem, G∗ receives the cryptosystem’s public key
as input.

Remark 5-1 Given the definition of an AHIP language and the fact that the Assistant is
expected to learn xpub, the above definition of an AHIP protocol inherently implies that the
private-input hiding property is computational: we only consider Adv ∈ PPT.

Remark 5-2 In this work, we do not address the scenario where a malicious prover colludes
with a verifier willing to reveal his private input. It is unclear whether this can be done
algorithmically: we may have to resort to code review and other such means of non-black
verification for this task. We leave this issue to future work.

5.4.5 Witness Hiding

A private-input hiding AHIP is also witness hiding. The reverse implication is not always
true, however, which explains why our definition considers the private-input hiding property.

165

Theorem 5-1 If an interactive protocol (P , (Vint,Vcheck),A) is private-input hiding, then it
is also witness hiding.

Proof. We prove this by contradiction. Assume (P ,Vint) is not witness-hiding, then there
exists an algorithm V∗ which, after its normal, non-rewindable, interaction with P , outputs
w, a witness for (xpub , xpriv) in the language L, with some non-negligible probability. We
can then build Adv = (G∗,V∗

2 , C∗) as follows:

1. G∗ prepares two private inputs xpriv and x′
priv .

2. V∗
2 receives (xpub , xpriv) as input. It runs V∗(xpub , xpriv) as a subprocedure when inter-

acting with P . The protocol runs normally and produces a receipt as expected. In
addition, because the protocol is not witness hiding by assumption, V∗ returns w such
that RL((xpub , xpriv), w) = 1. V∗

2 then outputs vstate∗ = (xpub , xpriv , w).

3. C∗ can verify that (xpub , xpriv) ∈ L using the witness w and the language’s relation RL.

4. Assume there exists W∗ that successfully produces (x′
pub , xpriv , w) that is successfully

verified by C∗. Then RL((x′
pub , xpriv), w) = 1, which means that (x′

pub , xpriv) ∈ L.

5. We reach a contradiction based on the definition of an AHIP language: if (xpub , xpriv) ∈
L, then there can be no other x′

priv such that (xpub , x
′
priv) ∈ L.

Thus, an AHIP that exhibits private-input hiding is also witness hiding. �

5.4.6 A General Construction

We now describe the techniques common to both of our protocols, BitProof and BetterBitProof.
We give the details of BitProof and BetterBitProof in Sections 5.5 and Section 5.6, respec-
tively.

Why Not Existing ZK Proofs? Recall that typical proof-of-plaintext zero-knowledge
proofs [37, 88] are not AHIPs: a human verifier cannot perform the computation required to
verify a typical zero-knowledge proof. Simply giving the assistant the entire proof transcript
is no solution either: the private input leaks immediately.

One might consider a construction from generic components, where the Prover performs
the proof correctly for the real private input j, then simulates the other z−1 proofs for private
inputs j∗ �= j. With all transcripts printed on the receipt, an Assistant would be unable to
tell which was truly executed sequentially: only the Verifier would know from her private
interaction with the Prover. However, this is also not human-verifiable, for more subtle
reasons: the messages of typical proof protocols are far too long for humans to remember
and compare (hundreds of bits). Even if we artificially reduce the verifier challenge space,
the simulation of the z − 1 incorrect values of the private input will result in normal-sized
prover messages with overwhelming probability.

166

Interestingly, this “prove-then-simulate” method would be workable if the specific proof
protocols were more amenable to human verification. In fact, this is exactly our approach:
we define a special method for encrypting bits that lends itself particularly well to human
verification. The soundness of our protocols is optimal in the length of the verifier’s challenge:
a 24-bit challenge (4 ASCII characters) yields soundness of 2−24.

Protocol Setup. The goal of our AHIP proofs is to demonstrate that a list of ciphertexts
encodes an integer j between 1 and z. In particular, given z bit-encryptions c1, c2, . . . , cz,
where ci = Epk(bi) and bi = 1 for i = j′ while bi = 0 otherwise, each of our two protocols
demonstrates that j′ = j. Thus, the private common input is xpriv = j, the public common
input is xpub = (c1, . . . , cz), and the prover’s secret input is (r1, . . . , rz), the randomization
values used in generating the public common input ciphertexts.

Special Bit Encryptions. Each construction provides a special form of bit encryption:
BitEnc for BitProof, and BetterBitEnc for BetterBitProof. These encryption forms lend them-
selves to proof protocols with optimally-sized first prover message and verifier challenge,
given a desired soundness parameter. For clarity, we use the single notation BitEnc in this
generic description.

In both schemes, BitEnc uses the same public key pk as the cryptosystem used to encrypt
the input ciphertexts, though the resulting ciphertext form is different. The proofs proceed
as follows on public common input xpub = (c1, . . . , cz), private common input xpriv = j,
and secret prover input w = (r1, . . . , rz), such that ∀i ∈ [1, z] �= j, bi = 0, bj = 1, and
∀i ∈ [1, z], ci = Epk(bi; ri):

1. Prover selects (R1, R2, . . . , Rz) in the proper randomization space of BitEnc, and gen-
erates (1, 2, . . . , z) such that
∀i ∈ [1, z], i = BitEncpk(bi; Ri).

2. Prover and Verifier engage in a special proof protocol that

i = BitEncpk(0) for i �= j, and j = BitEncpk(1).

3. Prover and Verifier engage in a proof that i and ci encrypt the same bit (in their
respective cryptosystems) for all i. It is worth noting that this proof does not require
any verification by the human verifier. Because the semantic security of both cryp-
tosystems hides the value of j, this portion of the proof can be entirely checked by the
Assistant.

We now describe how our two constructions, BitProof and BetterBitProof, implement
assisted-human interactive proofs for BitEnc and BetterBitEnc, respectively.

5.5 The BitProof Protocol

We begin with the BitProof protocol, which is a slightly modified version of Neff’s [29] original
voter-intent verification scheme. In Neff’s original scheme, the special bit-encryptions are

167

used as the primary representation of the ballot, i.e. as the proof input. In that setting, it
is not possible to prove the private-input hiding property, because the bit ciphertexts are
fixed before the proof begins. Thus, it is not possible to rewind the protocol far enough
to change the special bit encryptions without also changing the verifier’s challenge. This
technical complication prevents the proper reduction to semantic security.

Our modification is simple: the inputs are normal ciphertexts, and the special bit en-
cryptions are generated during the proof protocol. This requires us to prove an additional
step: that the bit encryptions match the input ciphertexts. However, as we will see in the
proof at the end of this section, BitProof is then naturally private-input hiding, assuming El
Gamal is semantically secure.

We now present BitEnc, the special form of bit encryption, and BitProof, the AHIP
protocol that proves a correct ciphertext/plaintext pair under BitEnc, with the plaintext as
the private input that remains hidden from the Assistant.

5.5.1 Bit Encryption

The structure of the special ciphertexts i = BitEnc(bi) is such that P can split up the proof
that j = BitEnc(1) into a human-verifiable component and a machine-verifiable component,
such that the machine does not learn j. Specifically, given a bit b ∈ {0, 1} and an El Gamal
public key pk , BitEnc produces:

BitEncpk(b; R) = [u1, v1], [u2, v2], . . . , [uα, vα]

such that :

• R = ((s1, . . . , sα), (t1, . . . , tα), (a1, . . . , aα)), with:

– s1, . . . , sα randomization values for pk ,

– t1, . . . , tα randomization values for pk , and

– a1, . . . , aα single bits.

• ∀k ∈ [1, α]:

– uk = Epk(ak; sk)

– if b = 1, vk = Epk(ak; tk)

– if b = 0, vk = Epk(āk; tk).

In other words, all the uk and vk values are encryptions of either 0 or 1, using Epk . If
b = 1, both elements of each pair encrypt the same bit : D(ui, vi) = (1, 1) or (0, 0). If b = 0,
both elements of each pair encrypt opposite bits : D(ui, vi) = (1, 0) or (0, 1). Note that,
given a bit b, there are two plaintext choices for each pair within BitEnc(b). All pairs are
not the same: the exact selection of bits is part of the randomization value provided to each
invocation of BitEnc.

168

5.5.2 Protocol

The public common input to the proof is xpub = (c1, c2, . . . , cz), with ci = Epk(bi), while the
private common input is xpriv = j. Recall that we already assume that (c1, c2, . . . , cz) is a
correct ciphertext set for some index j′. The goal of BitProof is to prove that j = j′. (This
assumption is explained in Section 5.7.)

Communication Model. Recall that the Prover may communicate in two ways: by send-
ing messages directly to the Verifier, or by printing message on the receipt. The messages
sent directly to the Verifier are private: they do not appear on the receipt. The messages
sent to the receipt are visible to both the Verifier and, later, the Assistant. The receipt has
the extra property that the Prover effectively commits to the information, since we assume
that even partially printed information on the receipt cannot be modified (Section 5.3).

Inputs. The public common input to the proof, xpub , is printed on the receipt at the
beginning of the interaction. Given the physical properties of the receipt, this is effectively
a commitment to xpub . The private common input, xpriv is given secretly to both the Prover
and Verifier.

Protocol BitProof:
Consider the AHIP setup, with prover P , limited verifier V = (Vint,Vcheck), and assistant A.
Let α be an integer parameter which affects the soundness of the proof. The proof inputs
are:

• public common input xpub = (pk , c1, . . . , cz), where pk is an El Gamal public key, and

∃j′ ∈ [1, z], cj′ = Epk(1) and ∀i �= j′, ci = Epk(0)

Denote bi such that ci = Epk(bi). (Thus, bj′ = 1, and bi = 0 otherwise.)

• private common input xpriv = j ∈ [1, z].

• secret prover input (r1, . . . , rz) such that, ∀i ∈ [1, z], ci = Epk(bi; ri)

Thus, the proof protocol is denoted:〈
P(pk , c1, c2, . . . , cz, j, r1, r2, . . . , rz),Vint(pk , c1, c2, . . . , cz, j)

〉
and it proceeds as follows:

1. Vint sends commit(chalV) to P , where chalV is an α-bit string.

2. P prepares:

• (R1, . . . , Rz), a list of randomization values for BitEncpk .

169

• (1, 2, . . . , z), such that i = BitEncpk(bi; Ri).

• ChosenString, an α-bit string which concatenates the underlying bit choices (a1, . . . , aα)
within Rj, the randomization value for j:

∀k ∈ [1, α], Dec(u
(j)
k) = Dec(v

(j)
k) = ChosenString[i].

P prints on receipt (1, 2, . . . , z). P sends ChosenString to Vint, but not to the receipt.
We assume that Vint can remember ChosenString.

3. Vint sends chalV to Prover, including proof that this is consistent with the commitment
sent earlier. (If the proof fails, P aborts.) This proof is a typical non-interactive proof
of decommitment that simply unveils chalV and the commitment randomness. Vint is
not expected to actually compute this commitment: as described in Section 5.3, a
helper organization has pre-computed chalV and commit(chalV) for the Verifier.

4. P sends α-bit strings String(1), . . . , String(z) and α-length arrays
RandFactors(1), . . . , RandFactors(z) to the receipt, where, ∀k ∈ [1, α]:

• if chalV [k] = 0, String(i) and RandFactors(i) reveal the plaintexts of the u’s:

∀i ∈ [1, z], u
(i)
k = Epk

(
String(i)[k], RandFactors

(i)
k

)
• if chalV [k] = 1, String(i) and RandFactors(i) reveal the plaintexts of the v’s:

∀i ∈ [1, z], v
(i)
k = Epk

(
String(i)[k], RandFactors

(i)
k

)

Note how String(i) and RandFactors(i) are parts of the randomization values in Ri,
initially generated randomly by the Prover when creating the bit encryption i.

5. Recall that s
(i)
k denotes the randomization value used to encrypt u

(i)
k , and t

(i)
k denotes

the randomization value used to encrypt v
(i)
k . Both of these are parts of Ri, the ran-

domization value for i. For each pair [u
(i)
k , v

(i)
k], P performs the following:

• if chal[k] = 1, define β
(i)
k = s

(i)
k , the randomization value of u

(i)
k , and define b

(i)
k as

the bit that v
(i)
k decrypts to.

• if chal[k] = 0, define β
(i)
k = t

(i)
k , the randomization value of v

(i)
k , and define b

(i)
k as

the bit that u
(i)
k decrypts to.

• if b
(i)
k = 0, compute

ρ
(i)
k = ri + β

(i)
k

170

• if b
(i)
k = 1, compute

ρ
(i)
k = ri − β

(i)
k

Note how b
(i)
k corresponds to the “revealed bit” for pair k of bit encryption i, while β

(i)
k

corresponds to the randomization value for the non-revealed element within the same
pair.

6. P outputs

receipt =
(
c1, . . . , cz, 1, . . . , z, chalP ,

String(1), . . . , String(z),

RandFactors(1), . . . , RandFactors(z),

{ρ(1)
k }k∈[1,α], . . . , {ρ(z)

k }k∈[1,α]

)

where chalP = chalV . We use different notation here to point out that a dishonest
prover might print a different challenge on the receipt.

7. Vint outputs vstate = (j, chalV , ChosenString) for Vcheck to consider.

8. Vcheck checks chalV = chalP and String(j) = ChosenString. Vcheck outputs True/False
accordingly.

9. On input receipt, A checks:

(a) the opening up of u’s and v’s is consistent with chal, String(1), . . . , String(m).

(b) the revealed u
(i)
k ’s and v

(i)
k ’s are correct encryptions of the bits of String(i)

using randomization values RandFactors
(i)
k , ∀k ∈ [1, α],∀i ∈ [1, z].

(c) for each pair [u
(i)
k , v

(i)
k]:

• if chalV [k] = 1, call b
(i)
k the revealed bit of v

(i)
k and w

(i)
k = u

(i)
k .

• if chalV [k] = 0, call b
(i)
k the revealed bit of u

(i)
k and w

(i)
k = v

(i)
k .

• note how b
(i)
k is the revealed bit for pair k of bit encryption i, and w

(i)
k is the

unopened ciphertext in the same pair.

• if b
(i)
k = 0, then check:

ciw
(i)
k

?
= Epk(1; ρ

(i)
k)

• if b
(i)
k = 1, then check:

ci

w
(i)
k

?
= Epk(0; ρ

(i)
k)

171

Note that this verification shows that i and ci encode the same bit. The homo-
morphic computation yields an encryption of the opposite of the already-revealed
bit, if and only if i and ci encrypt the same bit, assuming that they do encrypt
bits to begin with. The revelation of ρ

(i)
k enables this check.

If all succeed, A outputs True, otherwise False.

5.5.3 Proof of AHIP

We now prove that the above protocol is a private-input hiding AHIP. Intuitively, to prove
the private-input hiding property, we simulate the environment for the Verifier willing to
reveal his input to the Assistant, plugging in alternate ciphertexts for the pairs within the
bit encryptions. A distinguisher succeeds in distinguishing the selling Verifier from our
construction only if it can break the semantic security of El Gamal. We must assume, of
course, that the simulator has the same computational ability as the verifier: if the simulator
requires much greater computational ability, then the scheme is clearly coercible based on the
inability to simulate. At the same time, it is safe to assume a minimal computational ability
for the verifier, i.e. that she can compare short strings and remember one short string: we
don’t need to simulate the protocol for a completely incapable verifier who cannot perform
protocol verification in the first place.

Theorem 5-2 BitProof is a private-input hiding AHIP protocol.

Proof. Note, again, that we assume that (c1, c2, . . . , cz) is well-formed, meaning that exactly
one ciphertext is the encryption of bit 1, and all others are encryptions of bit 0. The proof
is meant to demonstrate that j is indeed the index of the ciphertext that is an encryption
of 1.

1. Completeness. The honest construction of j = BitEncpk(1) gives a sequence of α
pairs of ciphertexts where both elements of any given pair encode the same bit. Thus,
no matter the value of chal, String(j) will be fixed for a given j, in particular it will be
fixed to P ’s ChosenString.

In addition, for all indexes i ∈ [1, z] and k ∈ [1, α], if the pair [u
(i)
k , v

(i)
k] is correctly

created, then the homomorphic computation in Step 9c will succeed and produce a
ciphertext (of 0 or 1, depending on the case) with the specified randomness ρ

(i)
k , in

which case A will declare success on this check. Every other check of A and Vcheck

simply verifies that P performed the correct math in revealing the randomness of
various ciphertexts. Thus, with probability 1, Vcheck and A output True if P is honest.

2. Soundness. If the prover is cheating, we denote him P∗. As we continue to assume
well-formed ciphertext sets c1, c2, . . . , cz, and we know that the prover is trying to
cheat, cj = Epk(0). P∗ now has 2 possible strategies:

172

(a) P∗ might generate 1, 2, . . . , z properly, meaning that each i encodes the same
plaintext as the corresponding ci. Clearly, the equivalence checks between i and
ci will now succeed. However, since cj = Epk(0), then j = BitEncpk(0). Thus, j

must be composed of pairs of ciphertexts encoding opposite bits.

Recall that P∗ sends ChosenString before seeing chal. With j composed of pairs

of ciphertexts encoding opposite bits, in particular given that the values of u
(j)
k

are randomly selected for each k, a given j defines a one-to-one mapping from

chal to String(j). The only way for P∗ to succeed is to encrypt j = BitEnc(0)
with precisely the unique choice of “0,1” and “1,0” pairs such that the veri-
fier’s chal turns out to be the single value that maps to ChosenString, so that
String(j) = ChosenString. Assuming a statistically hiding commitment scheme for
commit(chal), P∗ can only rely on chance. As the length of chal is α, the proba-
bility of successfully tricking Vcheck is thus 2−α. Even with small α, soundness is
quite high.

There remains the possibility that P∗ will try to trick A by attempting to reveal
the bits of String(j) when the pairs of ciphertexts do not actually encrypt those
desired bits. Any such attempt by P∗ will be detected by A, who can simply re-
perform the E operations given String(j) and RandFactors(j). Thus, it is impossible
for P to successfully provide incorrect values of String(j) and RandFactors(j).

(b) P∗ might generate 1, 2, . . . , z in some way that, for some i, i and ci don’t
encode the same plaintext. Thus, there is at least one index k such that the pair
[u

(i)
k , v

(i)
k] is not a proper pair according to ci. P∗ will have to reveal either u

(i)
k or

v
(i)
k after Vint issues chal. If the revealed value is not 0 or 1, Vcheck or A will notice

with certainty. If the revealed value is 0 or 1, then the reveal of ρ
(i)
k will allow A

to notice the error in the homomorphic check of Step 9c.

3. Private-Input Hiding. We show that, if an adversary Adv = (G∗,V∗, C∗) can dis-
tinguish its verifier V∗ from any simulator W∗, it can also break semantic security of
the underlying public-key cryptosystem (G, E ,D), in this case El Gamal. Recall that
El Gamal and Exponential El Gamal have equivalent semantic security: one cannot
break without the other breaking, too. We show here the construction of Adv′, a new
adversary based on Adv that breaks the semantic security of Exponential El Gamal.
Recall that Exponential El Gamal provides an additive homomorphic property, such
that ciphertexts for two fixed values can be toggled homomorphically from one to the
other. In particular, the homomorphic operation E(1)/c toggles ciphertext c from E(0)
to E(1) and back.

First, we construct W∗, the verifier that, with the same computational ability as V∗,
should be able to simulate any of its outputs. W∗ will basically play man-in-the-
middle between P and V∗, substituting the private input along the way (effectively
option j) and rewinding V∗ as necessary to successfully complete the man-in-the-middle
simulation. P will be creating a receipt for option j′, while W∗ substitutes certain

173

messages to convince V∗ that the chosen option was j. W∗ outputs whatever V∗

outputs.

We then show that if C∗ can distinguish the outputs of W∗ and V∗, then we can build
Adv′ to break semantic security of the underlying cryptosystem.

W∗(pk , (c′1, . . . , c
′
z), j

′, j) :

(a) initialize V∗ with the appropriate random tape and inputs (pk , c′1, . . . , c
′
z, j). Note

that (c′1, . . . , c
′
z) encodes option j′, not j. W∗ will now trick V∗ into accepting this

receipt for option j.

(b) run V∗ with random, well-formed inputs until it reveals chal. Rewind V∗ until
right after it submitted commit(chal) (so it is still committed to this challenge.)

(c) interact with P normally, giving it the same commit(chal) and chal as V∗ submit-
ted.

Collect String(i), RandFactors(i) for all i ∈ [1, z], noting in particular String(j). Per-
form all soundness checks against the messages from P , to ensure that (c′1, . . . , c

′
z)

indeed encodes j′.
Recall that, by assumption, we do not consider the case where P is colluding with
the adversary. Thus, in this construction, we assume P successfully completes
the proof.

(d) run V∗, simulating to it all messages it expects from the Prover. In particular, send
the just-discovered String(j) to V∗ when it expects ChosenString. Every subsequent
aspect can be simulated, since the chal submitted by V∗ will be the same as was
originally extracted. The only difference between the P-to-W∗ messages and W∗-
to-V∗ messages is the replacement of ChosenString.

(e) output whatever V∗ outputs.

We stress that, in the above setup, V∗ saw exactly what it would have seen in a real
interaction to convince it that receipt encodes choice j, yet receipt actually encodes
choice j′. In addition, P interfacing with W∗ also saw exactly what it would have seen
while interacting with V∗, so receipt will match what V∗ outputs.

Now we show how, if C∗ can distinguish which of the receipt/output pairs belongs to
V∗ and which one belongs to W∗, then we break semantic security of the underlying
cryptographic scheme. Our Adv′ construction effectively runs the programs for W∗ and
Adv = (G∗, C∗,V∗) as black boxes, simulating to these boxes the actions of P . Let α
and z be integer system parameters that will affect the probability of success of Adv′.

Before we construct Adv′, we construct X , a special extractor that interacts with W∗ as
if it were the prover. We modularize this construction first, because, in the construction
of Adv′, we will use two instances of W∗, and thus two instances of X , one to “run”
each W∗. This approach is necessary because, in this reduction, we cannot be certain
to provide V∗ with truly correct inputs. Thus, we run two W∗ instances, one which,

174

through a “double swap,” will turn out to produce exactly the output and receipt that
would have been produced by V∗ in a real interaction with the Prover, and another
that will behave like a normal W∗, outputting a receipt that doesn’t actually match
its claim of private input. The construction won’t know which one is which, as they
will be constructed from the challenge ciphertext provided by the semantic security
game. We will then ask C∗ to distinguish them. If it can, our adversary Adv′ will break
semantic security.

The purpose of X is to run an instance of W∗ with inputs that are derived from a
single ciphertext that X cannot decrypt, for instance the ciphertext received as the
challenge from the semantic security environment (or a related one). The extractor
will thus rewind and run W∗ in such a way as to ensure that W∗ accepts the proof and
outputs its normal output, even if its input is incorrect.

This may be confusing, as one may recall that W∗ is doing exactly the same thing to
the underlying V∗: tricking it into accepting a proof. In fact, X performs an interesting
twist of hand: if the input provided to W∗ is corrupt, then W∗’s behavior reverts to
exactly the behavior of V∗, with a receipt to match. Of course, neither W∗ nor X will
know that this reversal has occurred. If C∗ figures it out, then it will have broken the
semantic security of the underlying cryptosystem.

At a high level, X behaves like a Prover with one hand tied behind its back: it must
use some ciphertext it hasn’t created as part of the bit encryptions. To enable it to
answer W∗’s challenge, X will need to rewind W∗ in the usual way.

X (pk , z, α, C, j0, j1):

(a) X assumes that C is the encryption of a bit b under Epk . Note that X can compute
C−1, the homomorphic inversion of C into an encryption of b̄. C−1 is an El Gamal
pair whose elements are computed as the inverse of the elements of C. All of this
can be done without knowing b. The integers j0 and j1 are in the range [1, z].

(b) X produces (c1, . . . , cz), as follows:

• select El Gamal randomization values (r1, . . . , rz)

• compute cj0 = REpk(C
−1; rj0)

• compute cj1 = REpk(C; rj1)

• compute ∀i ∈ [1, z], i �= j0 and i �= j1, ci = Epk(0; ri)

Note how, without knowing the value of b, X has ensured that cj0 = Epk(b̄) and
cj1 = Epk(b). Thus (c1, . . . , cz) corresponds to a genuine public common input xpub

for private input xpriv = jb.

(c) X initializes W∗(pk , (c1, . . . , cz), j0, j1). Note how, at this point, W∗ is being run
on correct indices j0 and j1 if b = 0, and swapped (thus incorrect) indices if b = 1.

(d) X simulates valid, correctly distributed Prover messages while running W∗ until
W∗ reveals chal, which happens before X needs to prove anything real. Then, X
records chal and rewinds W∗ until just after it sends commit(chal).

175

(e) X can now prepare the bit encryptions with advance knowledge of chal. For
i ∈ [1, z], X prepares i as follows:

• if i �= j0 and i �= j1, i = BitEncpk(0; Ri), with Ri picked randomly.

• if i = j0, then, for k ∈ [1, α]:

– if chal[k] = 0, X will have to reveal u
(i)
k . Thus, it picks random bit a

(i)
k ,

El Gamal randomization values s
(i)
k and t

(i)
k , and computes

u
(i)
k = Epk(a

(i)
k ; s

(i)
k).

If a
(i)
k = 1, X then computes

v
(i)
k = REpk(C

−1; t
(i)
k).

Otherwise, if a
(i)
k = 0, it computes

v
(i)
k = REpk(C, t

(i)
k).

Recall that C is the encryption of b and C−1 is the encryption of b̄. Thus,
if b = 0, then u

(i)
k and v

(i)
k encrypt the same bit, but if b = 1, then u

(i)
k

and v
(i)
k encrypt different bits.

– if chal[k] = 1, X will have to reveal v
(i)
k . Thus, X performs the opposite

assignments: the bit equality between the u
(i)
k and v

(i)
k remains the same,

but X must be able to reveal the other element. It picks random bit a
(i)
k ,

randomization values s
(i)
k and t

(i)
k , and computes

v
(i)
k = Epk(a

(i)
k ; s

(i)
k).

Then, if a
(i)
k = 1, X computes

u
(i)
k = REpk(C

−1; t
(i)
k).

Otherwise, it computes

u
(i)
k = REpk(C, t

(i)
k).

Thus, again, if b = 0, u
(i)
k and v

(i)
k encrypt the same bit, but if b = 1, they

encrypt different bits.

X thus produces cj0 =
(
[u

(j0)
1 , v

(j0)
1], . . . , [u

(j0)
α , v

(j0)
α]

)
with the values just

generated. Note how j0 = BitEncpk(b̄), because the elements of each pair
encode the same bit when b = 0, and different bits if b = 1.

• if i = j1, then X performs a similar set of actions as for i = j0, with one key
difference: it inverts its use of C and C−1 in the special preparation of the

176

pairs within j1 . Thus, the elements within each pair of j1 encrypt the same
bit if b = 1, and different bits if b = 0. Note how j1 = BitEncpk(b).

As a result, X has created a proper list (1, . . . , z) for input jb: when b = 0, j0

encrypts 1, and j1 encrypts 0, and when b = 1, the roles are reversed.

In other words, if b = 0, X has provided completely correct inputs to W∗, and if
b = 1, X has flipped the indices, and W∗ is being “cheated.”

(f) Regardless, X can continue the simulation for W∗, providing all necessary String(i),
since the pairs within the bit encryptions were set up so that X knows how to
decrypt the right elements within each pair.

(g) Though it may have lied to W∗ regarding whether (c1, . . . , cz) really does encode
option j0, X did not lie regarding the fact that, for all i, i and ci encrypt the
same bit: j0 and cj0 both encrypt bit b̄, whatever b is, and j1 and cj1 both
encrypt bit b. That said, correctness doesn’t necessarily imply that X can reveal
the ρ

(i)
k properly.

Here, we show that X can in fact reveal ρ
(i)
k :

• for i �= j0 and i �= j1, X created the ci and i from “scratch”. Thus, it can
easily reveal the appropriate ρ

(k)
i , since it knows all randomization values for

all ciphertexts, just like an honest Prover.

• for i = j0, and for k ∈ [1, α]:

– note how cj0 = REpk(C
−1; rj0)

– note how, if the revealed a
(j0)
k = 1, then the other ciphertext in the pair,

w
(j0)
k (which is u

(j0)
k if chal[k] = 1 or v

(j0)
k otherwise), is REpk(C

−1; t
(j0)
k),

and recall that the Verifier will check:

ci

w
(i)
k

?
= Epk(0; ρ

(i)
k)

Conveniently:

cj0

w
(j0)
k

=
REpk(C

−1; rj0)

REpk(C−1; t
(j0)
k)

= Epk(0; rj0 − t
(j0)
k)

thus, X can simply reveal ρ
(j0)
k = rj0 − t

(j0)
k

– note how, if the revealed a
(j0)
k = 0, then the other ciphertext w

(j0)
k is

REpk(C; t
(j0)
k), and recall that the Verifier will check:

ciw
(i)
k

?
= Epk(1; ρ

(i)
k)

Conveniently:

177

cj0w
(j0)
k = REpk(C

−1; rj0)REpk(C; t
(j0)
k)

= Epk(0; rj0 + t
(j0)
k)

thus, X can simply reveal ρ
(j0)
k = rj0 + t

(j0)
k

• for i = j1, and for k ∈ [1, α], the same reasoning applies for revealing ρ
(j1)
k .

Notice that the only difference is that the C and C−1 values are swapped:

– cj1 is a reencryption of C

– in case a
(j1)
k = 1, the w

(j1)
k are reencryptions of C.

– in case a
(j1)
k = 0, the w

(j1)
k are reencryptions of C−1.

Thus, X can reveal all the ρ
(j1)
k appropriately.

(h) Thus, X has appropriately simulated the Prover for W∗. Note that, if X ’s input
C was the encryption of 0, then W∗ was given correct inputs, but if C is the
encryption of 1, W∗ was given swapped indices as inputs.

(i) X outputs:

• the receipt if its interaction with W∗, exactly as a Prover would do, and

• the output of W∗, effectively the vstate.

So, what happens if W∗ is given swapped inputs? Interestingly, note that W∗ then
simulates the interaction for V∗ with index j1, which is the correct index for the public
input generated by X . In other words, if W∗ is successfully run on swapped indices,
X outputs a receipt and the true output that V∗ would produce if it engaged in a real
proof based on this xpub , with correct private input j1. Note that this public input
generated by X is correctly distributed. (Sometimes, two wrongs do make a right!)

The Purpose of X . In short, if C is the encryption of 0, then the output of X is
a receipt and verifier state that correspond exactly to a real interaction between W∗

and P , with real private input j0 and claimed private input j1. If C is the encryption
of 1, then the output of X is a receipt and verifier state that correspond exactly to an
interaction between V∗ and P , with real private input j1.

The construction for Adv′ is then clear. It runs two copies of X with opposite bit
ciphertexts C0 and C1. Each X which will run a copy of W∗. The X that got C = Epk(0)
will simulate a completely correct run of W∗, while the X that got C = Epk(1) will
simulate a completely correct run of V∗. If C∗ can tell us which one is V∗, then it can
distinguish between the two runs of X , and thus between C0 and C1.

Adv′:

178

(a) obtain the cryptosystem’s public key pk from the semantic security environment.
The simulated AHIP proof will thus deal with language Lpk , defined as the lan-
guage of proper ciphertext/plaintext pairs under pk . Specifically, the public input
will be the ciphertext, and the private input the plaintext.

(b) run G∗(pk) to obtain the two indices (j, j′) that Adv wishes to use in eventually
determining which receipt is which. The index j is the index which should truly
match the receipt for V∗, while j′ is the index which should truly match the receipt
for W∗, though W∗ will claim j.

(c) output plaintexts (0, 1) to the semantic security environment as the two plaintexts
Adv′ will later attempt to distinguish.

(d) obtain from the semantic security environment a challenge ciphertext C = E(b)
for b ∈ {0, 1}. Homomorphically compute C̄ = Enc(b̄).

(e) initialize and run X0 and X1, two instances of X , as follows:

• (receipt0, vstate0) = X0(pk , z, α, C̄, j′, j), and

• (receipt1, vstate1) = X1(pk , z, α, C, j′, j)

Recall that, if C̄ = Epk(0) (respectively if C = Epk(0)), then X0 (respectively X1)
will produce a receipt and verifier state that are exactly valid for a run of 〈P ,W∗〉
with real private input j′, and claimed private input j by W∗. On the other hand,
if C̄ = Epk(1) (respectively if C = Epk(1)), then X0 (respectively X1) will produce
a receipt and verifier state that are exactly valid for a run of 〈P ,V∗〉 with private
input j.

(f) Compute and output b′ = C∗(receipt0, vstate0, receipt1, vstate1)

From the above construction, one can see that, if C∗ has a non-negligible advantage in
guessing b, then it has effectively determined that C = Epk(b) with the same advantage.

�

5.6 A More Efficient Implementation: BetterBitProof

We now present a second implementation, BetterBitProof, which provides the very same
function with a significantly smaller receipt size for the same soundness. Soundness remains
optimal given the length of strings a human verifier is capable of comparing. At a high
level, the approach is quite similar to that of BitProof: we present a bit encryption scheme
to prepare (1, . . . , z), and we use a special proof method to demonstrate that this is the
encryption of bits such that j encrypts 1 and all others encrypt 0.

First, we provide an intuition of what we seek from this new bit encryption mechanism,
BetterBitEnc. Then, we detail the BetterBitEnc algorithm and the algebraic structure of
the SO(2, q) group on which it relies. We then describe the associated AHIP protocol,
BetterBitProof. Finally, we prove that BetterBitProof is indeed private-input hiding, assum-
ing El Gamal is semantically secure.

179

5.6.1 An Intuition

Consider the properties of BitEnc, the bit encryption used in the previous section. A fixed
BitEnc(0) defines a one-to-one-mapping between the α-bit challenges and α-bit responses.
In particular, a given response has exactly one corresponding challenge. However, if we
fix BitEnc(1), all α-bit challenges correspond to the same α-bit response. Importantly, this
correct mapping from a single challenge to a single response can be verified without revealing
whether the bit encryption hides a 0 or a 1.

We seek the same property from a different representation, in particular one that doesn’t
require two El Gamal ciphertexts per bit of the challenge when encrypted. For this, we look
at a specific group structure that can encode any plaintext or challenge in a single element,
with a means of encrypting a single element from this group using a constant number of
El Gamal ciphertexts. In addition, there should be an efficient mechanism proving that
a given challenge maps to a given response, given an encrypted bit. We make use of the
homomorphic properties of El Gamal for this verification.

5.6.2 Number Theory of SO(2, q)

Background. Recall that an orthogonal matrix is a square matrix whose transpose is its
inverse. Then, O(n, F) is the orthogonal group of n × n orthogonal matrices with matrix
elements in field F , and with matrix multiplication as the group operation. The group
O(n, q) with q a prime then refers to the orthogonal group of n × n orthogonal matrices
with matrix elements in GFq. Note how, because a matrix’s transpose is its own inverse, all
matrices in the group must have determinant 1 or −1. Thus, we define SO(n, q), the special
orthogonal group, as the subgroup of O(n, q) of matrices with determinant 1.

Important Concepts. In this work, we consider specifically SO(2, q), whose elements are
of the form: [

α β
−β α

]

with α2 + β2 = 1. SO(2, q) is a cyclic group. Its order is q − 1 when q ≡ 1 mod 4, and q + 1
when q ≡ 3 mod 4. In particular, the order of an SO(2, q) group is always a multiple of 4.
(We prove this at the end of this subsection.) We denote 4Λ the group order.

The elements of SO(2, q) can be represented as 2-vectors by the correspondence that
associates each matrix with its first row. Thus, we consider elements u of the form (u0, u1) =
(α, β), such that α2 + β2 = 1. The group operation, which we denote ⊗, is thus:

u ⊗ v = (u0v0 − u1v1, u0v1 + u1v0)

Geometric Interpretation. One can interpret each of these elements in SO(2, q) as ro-
tations. Consider u, v, w ∈ SO(2, q) such that w = u ⊗ v. Then consider the vector dot

180

product: u · w. First, we recall w:

w = (u0v0 − u1v1, u0v1 + u1v0)

then, we perform the dot product:

u · w = u2
0v0 − u0u1v1 + u0u1v1 + u2

1v0

= (u2
0 + u2

1)v0

= v0

In other words, the dot product between two vector elements is the first coordinate of the
ratio between the two vectors, where by ratio we mean to use the inverse group operation.
This property matches the geometric interpretation of rotation transformations, where the
dot product yields the effective cosine of the angle between the two vectors (as they are both
of norm 1.) Note also that the inverse of c retains the same first coordinate v0, since, in
SO(2, q), the inverse of a matrix is its transpose. This is also consistent with the rotation
interpretation: whichever direction one rotates, the resulting dot product between the start
and end vectors should be the same given a fixed angle of rotation.

The geometric interpretation can be particularly useful when combined with the dot-
product operation. In particular, consider g a generator element of SO(2, q). We know from
above that:

gi · gj = gj−i[0]

Then, if we have

gi · gj = gi · gk

we conclude that:

j − i = ±(k − i) mod 4Λ

We also note an additional property that further explores this geometric interpretation.
We now consider all vectors in Z2

q, in particular certain vectors that can be computed from
SO(2, q) vectors. The following uses the normal Z2

q vector space subtraction and dot product:

(g(i+2k) − gi) · g(i+k) = (g(i+2k) · gi+k) − (gi · g(i+k))

= g−k[0] − gk[0]

= 0

In the geometric interpretation, this is to be expected, as g(i+k) bisects g(i) and g(i+k).
This also leads to the most important SO(2, q)-related lemma for this work.

181

Lemma 5-1 Given t an element of SO(2, q), and α0 ∈ Zq, there are exactly two elements
in SO(2, q), u0 and u1, such that:

u0 · t = u1 · t = α0

Proof. Recall that the vector-representation of elements in SO(2, q) is (α, β) ∈ Z2
q, where

α2 + β2 = 1 mod q. Denote δ ∈ SO(2, q) such that δ[0] = α0. There are, of course, exactly
two such elements, which we can denote δ and δ−1

Then, by prior reasoning regarding vector dot product:

u · t = α0 =⇒ u = δ±1 ⊗ t

Denote g a generator of SO(2, q), c ∈ Z∗
4Λ such that t = gc, and d ∈ Z∗

4Λ such that
δ = gd. The vectors u0 and u1 are thus g(c+d) and g(c−d), and no other elements in SO(2, q)
can have the same dot product α0 with t.

�

Details on the structure of SO(2, q). Let R = GL(2, q) be the full matrix ring generated
by SO(2, q):

R =

{(
a b
−b a

)
: a, b ∈ Zq

}

One easily verifies that R ≡ Zq[X]/(X2 + 1) under (X) ↔
(

0 1
−1 0

)
.

Lemma 5-2 If q is prime, and q ≡ 3(mod4), then SO(2, q) is cyclic of order q + 1.

Proof. X2 + 1 is an irreducible element of Zq[X], hence R is a field and R∗ is cyclic. Since
det is multiplicative2, SO(2, q) is a multiplicative subgroup of R∗, hence is cyclic.

To deduce its order, note that the map α(w) = wq−1 defines a multiplicative homo-
morphism, α : R∗ → R∗. Since det is multiplicative, and since aq−1 = 1 for all a ∈ Z∗

q,
α(R∗) ⊂ SO(2, q). On the other hand, there are only two elements of Zq whose determinant
(norm) is 1 : {1,−1}. Since q − 1 = 4k + 2, −1 ∈ α(R∗), which implies SO(2, q) ⊂ α(R∗).
Thus we conclude:

1. SO(2, q) = {wq−1 : w ∈ R∗ }.
2. |SO(2, q)| = |R∗|/| ker(α)| = (q2 − 1)/(q − 1) = q + 1.
3. If G is a generator of the multiplicative group R∗, then g = Gq−1 is a generator of

SO(2, q).

�
2Note that det is identical to NR|Zq

, the norm of R over Zq as an algebraic extension.

182

Lemma 5-3 If q is prime, and q ≡ 1(mod4), then SO(2, q) is cyclic of order q − 1.

Proof.
We can find i ∈ Zq such that i2 = −1. Define matricies A and B in R by

A =

(
1/2 i/2
−i/2 1/2

)
B =

(
1/2 −i/2
i/2 1/2

)

Since A2 = A, B2 = B and AB = 0, each of the following statements can be verified
mechanically.

1. Every element of R can be expressed uniquely as aA + bB where a, b ∈ Zq.
2. Under this correspondence, R∗ consists of exactly those elements with both a �= 0 and

b �= 0.
3. Further, since AB = 0, this correspondence defines a multiplicative homomorphism

from R∗ to Z∗
q × Z∗

q. It follows from 2 that this is an isomorphism.
4. Under this coorespondence, SO(2, q) consists of exactly those elements of R∗ for which

ab = 1.
5. Hence SO(2, q) is naturally isomorphic to Z∗

q via either of the two coordinate projec-
tions (i.e. w → a or w → b). Since Z∗

q is cyclic of order q − 1, so is SO(2, q).

�

5.6.3 Bit Encryption

Consider El Gamal in the q-order subgroup of Z∗
p, where q|(p − 1). We will, in particular,

make use of Exponential El Gamal, like BitProof, where:

Epk(m; r) = (gr, gmyr)

where x is the El Gamal secret key, and y = gx mod p is the El Gamal public key.

Defining Classes within SO(2, q). Let Γ be a subgroup of SO(2, q) of order 4λ, where q
is the order of the El Gamal subgroup of the underlying cryptosystem. Recall that the order
of SO(2, q) is a multiple of 4, and that elements of SO(2, q) are isomorphic to 2-vectors with
components in Zq. Let γ be a generator of SO(2, q). The parameter λ is selected so that
λ = α, where α is the assumed maximal string length that human verifiers can distinguish.
We define:

• Zero = { ζi : ζi = γ4i+1 ; i ∈ [0, λ[},
• One = {ϑi : ϑi = γ4i−1 ; i ∈ [0, λ[},
• Test = { τi : τi = γ2i ; i ∈ [0, λ[}.

183

As the names imply, we consider any element of Zero a 0-plaintext, and any element of One
a 1-plaintext. Test is the challenge domain: challenges from the verifier will be selected from
this class. Thus, we have defined our group of plaintexts and challenges.

Relating the Classes. We denote δk c = ϑk − ζc−k, using standard vector subtraction in
Z2

q, and we note that, in the geometric interpretation, τc = γ2c effectively bisects ϑk = γ4k−1

and ζc−k = γ4c−4k+1. The geometric interpretation is found in Figure 5-6.

τc

ϑk

ζc−k

δkc

Figure 5-6: The geometric interpretation of the interplay between elements of One, Zero, and
Test. Given ϑk , an element of One, and a test element τc, there is exactly one element of
Zero, ζc−k , such that the corresponding difference vector δk c is orthogonal to the test vector.

Thus, for a given element t of Test and a given u ∈ Zero, there is exactly one element
u ∈ One such that u · t = v · t (and no other element of Zero with the same dot product.)
This follows from Lemma 5-1 and the careful choice of indices for the classes One, Zero, and
Test.

Vector Encryption. We can perform component-wise encryption of vectors in Z2
q. Using

Exponential El-Gamal, we gain the ability to perform homomorphic vector addition of two
encrypted vectors, and homomorphic vector dot-product with one encrypted vector and one
plaintext vector.

For example, when encrypting s ∈ SO(2, q), we produce two ciphertexts, one that en-
crypts s[0], the other that encrypts s[1]. We abuse the single-value notation to represent
vector encryption:

Epk(s; r) =
(
Epk(s[0]; r[0]), Epk(s[1]; r[1])

)
Note that, with vector components in exponential El Gamal ciphertext, homomorphic vector
addition is trivial using component-wise homomorphic multiplication. In particular, this
feature is available because q, the order of the El-Gamal subgroup, matches the order of the
vector-component group.

184

In addition, if we denote Q = Epk(s; r), then we can homomorphically compute an
encryption of the dot product s · t where t is a plaintext element of Z2

q. We use the multiply-
by-a-constant homomorphic property and ciphertext-by-ciphertext additive homomorphism:

Q · t = (Q[0]t[0] ⊕ Q[1]t[1]) = Epk(s · t; r · t)
Notice how the result is a single ciphertext, which is to be expected when performing a

vector dot-product. Notice also how the randomization value in the resulting ciphertext is
also the result of a dot-product, given that the homomorphic operation actually performs
an exponentiation of the El Gamal ciphertexts. Recall that we are dealing with Exponential
El Gamal, where exponentiation to a plaintext multiplies the contained plaintext and ran-
domization exponent, and multiplication of ciphertexts yields a homomorphic addition with
the sum of the random exponents:

Q · t = (Q[0]t[0] + Q[1]t[1])

= Epk(s[0]; r[0])t[0] × Epk(s[1]; r[1])t[1]

= Epk(s[0]t[0]; r[0]t[0]) × Epk(s[1]t[1]; r[1]t[1])

= Epk (s[0]t[0] + s[1]t[1]; r[0]t[0] + r[1]t[1])

= Epk(s · t; r · t)

Bit Encryption. Let b be the bit we wish to encrypt. We define an SO(2, q)-based method
of bit encryption. First, pick a random vector γ4r′+2b+1 using randomness r′ ∈ Zλ. This
vector will be in Zero if b = 0, and in One if b = 1. Then, perform the exponential El-Gamal
vector encryption of this vector using randomness r ∈ Z2

q:

BetterBitEncpk(b, (r, r′)) = Epk(γ
4r′+2b+1; r)

In comparison to the prior protocol, BitProof, one can draw clear parallels for the random
values (r′, r). Random value r′ selects the specific element within One, which is the equivalent
of the choices of the exact u, v pairs in BitEnc, which, as we saw, depend on the random
bits a

(i)
k that are part of R, the randomization value for BitEnc. Random value r is the

randomness used in the encryption process, which is exactly the same thing as in BitEnc,
though here there are only two ciphertexts rather than α, and thus only two randomization
values denoted in vector form, r.

5.6.4 The BetterBitProof Protocol

The BetterBitProof protocol presents the exact same interface as BitProof, except BitEnc is
now replaced by BetterBitEnc, and the exact proof algebra is optimized in SO(2, q). We
assume the same communication model and, as we will see, the same form of inputs.

185

Protocol BetterBitProof:
Consider the AHIP setup, with prover P , verifier (Vint,Vcheck), and assistant A. (Vint,Vcheck)
are computationally limited, with sole ability to compare and copy short strings of size
α = log2 λ. Consider the proof inputs:

• public common input xpub = (pk , γ, λ, c1, . . . , cz) where pk is an El Gamal public
key, where q is the order of the El Gamal group, and γ is a generator of Γ, a 4λ-
order subgroup of SO(2, q) in vector representation. The ci are Exponential El Gamal
ciphertexts such that:

∃j′ ∈ [1, z], cj′ = Epk(1) and ∀i �= j′, ci = Epk(0)

Denote bi such that ci = Epk(bi). (Thus bj′ = 1 and bi = 0 otherwise.)

• private common input xpriv = j ∈ [1, z]

• secret prover input (ω1, . . . , ωz), such that ∀i ∈ [1, z], ci = Epk(bi; ωi).

The proof protocol is thus denoted exactly as for BitProof, with the same “interface”:〈
P(pk , c1, c2, . . . , cz, j, ω1, ω2, . . . , ωz),Vint(pk , c1, c2, . . . , cz, j)

〉
and proceeds as follows:

1. Vint sends commit(chal) to P , where chal ∈ Z∗
λ. This challenge chal should be inter-

preted as the index of an element of Test.

2. P prepares:

(a) r1, . . . , rz, randomization vectors in Z2
q

(b) kj
R←− [1, λ[, a random index into One and the associated element ϑkj

. ϑkj
is

effectively a randomly selected “1-vector” which will be used when producing the
special bit encryption of bj,

(c) (li)i∈[1,z],i�=j, indexes into Zero, and the associated elements (ζli), the randomly
selected “0-vectors” which will be used in the special bit encryptions of bi, i �= j.

(d) Qj = Epk(ϑkj
; rj), for the chosen index j,

(e) Qi = Epk(ζli ; ri), for all i ∈ [1, z], i �= j,

then prints on receipt the values (Q1, . . . ,Qz).

P also sends kj to Vint, but doesn’t include it in the receipt. This is the prover’s
commitment to the exact element of One that corresponds to the index j. kj effectively
indicates the plaintext for Qj. (This is the equivalent of ChosenString in BitProof.)

3. Vint reveals chal to Prover. If it doesn’t match commit(chal), Paborts.

186

4. Recall that chal corresponds to τc, an element of Test. P then computes:

(a) ki = c − li, for i �= j, an index into One for all the options that were not chosen.
These are the simulated elements of One for all the other options, now that the
prover knows the challenge chal.

(b) lj = c − kj, an index into Zero for the chosen option j. This is the simulated
element of Zero for the one selected option j, now that the prover knows chal.

(c) (δk1 c, . . . , δkz c), the difference vectors between ζli and ϑki
. Note that δki c is

orthogonal to τc (as per the proof of Lemma 5-1.) Note also how these difference
vectors are independent of the option j: they depend on the initial randomization
values selected for bit encryption and on the verifier’s challenge.

(d) ρi,0 = ri ·δki c−||δki c||2ωi ; ρi,1 = ri ·τc, for all i ∈ [1, z]. These are effectively the
revealed random factors of dot products that the verifier will be able to perform
homomorphically. We clarify these random factors in the next few paragraphs.

P prints to receipt
(
{ki, ρi,0, ρi,1}i∈[1,z]

)
, which now yields:

receipt =
(
c1, c2, . . . , cz, 1, 2, . . . , z, chalP , k1, . . . , kz,

ρ1,0, . . . , ρz,0, ρ1,1, . . . , ρz,1

)

5. Vint outputs vstate = (j, chalV , k) for Vcheck to consider.

6. Vcheck outputs True if both chalP = chalV and k = kj.

7. A reads receipt and performs the following checks, noting that we consider c = chal:

(a) Denote homomorphic subtraction as �.
Compute Q′

i = Qi � Epk(ζc−ki
,0),∀i ∈ [1, z].

Thus, Q′
i is either the null vector (if i �= j), or the difference vector δki c. In

either case, Q′
i is orthogonal to τc. Note that this homomorphic subtraction is

performed so that Q′
i keeps the same randomization exponents as Qi, which is ri.

(b) homomorphically compute Q′
i · τc.

The plaintext of this value should be 0, because of the orthogonality just men-
tioned. The randomness of the dot product should be ri · τc = ρi,1. A can simply
perform Epk(0; ρi,1) and check this value against the computed dot-product.

(c) homomorphically compute Q′
i · δki c.

As Q′
i is either the null vector or δki c, the very same difference vector against

which we are computing the dot product, the result is the encryption of 0 or
||δki c||2, under randomness ri · δki c. The trick now is to take the original i’th

187

ciphertext, ci = Epk(bi; ωi), and use it to verify that i indeed encodes the same
bit as ci. Recall that ρi,0 = ri · δki c − ||δki c||2ωi. Thus, A checks that

Q′
i · δki c

c
||δki c||2
i

?
= Epk(0; ρi,0)

If i is the bit encryption of 1, then Q′
i = δki c, and the numerator of the fraction is

the Exponential El Gamal encryption of ||δki c||2 with random exponent ri ·δki c. If
ci is the Exponential El Gamal encryption of 1—i.e. it matches i as expected—
then the denominator is the Exponential El Gamal encryption of ||δki c||2 with
random exponent ||δki c||2ωi, since ωi was the random exponent for ci. The equality
check is thus successful.

If i is the bit encryption of 0, then Q′
i is the null vector, and the numerator of

the fraction is the Exponential El Gamal encryption of 0 with random exponent
ri · δki c. If ci is the Exponential El Gamal encryption of 0—i.e. it matches i

as expected—then the denominator is the Exponential El Gamal encryption of 0
with random exponent ||δki c||2ωi. Again, the equality check is successful.

5.6.5 BetterBitProof is a Private-Input Hiding AHIP

Theorem 5-3 BetterBitProof is a private-input hiding AHIP.

Proof. Note, again, that we assume that (c1, c2, . . . , cz) is well-formed, meaning that exactly
one ciphertext is the encryption of 1, and all others are encryptions of 0. The proof is meant
to demonstrate that j is indeed the index of the ciphertext that is a bit encryption of 1.

1. Completeness. The honest construction yields j = BetterBitEnc(1), and i =
BetterBitEnc(0) otherwise. Thus, given c from chal, Q′

j will be Epk(δkj c; rj), while
Q′

i will be Epk(0; ri) for all other i. In all cases, the dot product with τc will be 0,
with randomness ri · τc, which will cause the check for ρi,1 to succeed. In addition, the
check that i encodes the same bit as ci will also succeed, as carefully described in the
original protocol regarding the dot-product of Qi with δki c. Vcheck’s verification is also
trivial: P commits to kj, which will clearly show up, if P is honest, as the j’th value
of k on the receipt.

2. Soundness. If the prover is cheating, we denote him P∗. As we continue to assume
well-formed ciphertext sets, we know that cj = Epk(0). Two situations occur: either

j = BetterBitEncpk(0), or j is the bit-encryption of something else.

In the first case, A’s verification that, for all i, i and ci encode the same bit will suc-
ceed, but recall that P∗ sends kj before seeing chal. For a given j = BetterBitEncpk(0) =
Qj, each test vector τ, indexed by chal, maps to a single “1-vector” ϑ such that ϑ·τ = β
with β the dot-product of τ with the Zero element encrypted within Qj. The specific

188

element of ϑ is the one whose index we compute in the protocol: kj. For P∗ to succeed,
it must guess this kj correctly before it sees chal. The best it can do is guess randomly,
with a probability of success of 1/λ = 2−α.

In the second case, j and cj do not encode the same bit, in which case the straight-
forward algebraic dot-product check will cause A to declare failure with probability 1,
since P will simply not be able to reveal a random factor that lets the homomorphic
computation succeed.

3. Private-Input Hiding. An adversary that could distinguish between receipts for
various values of j could break semantic security of the underlying public-key cryp-
tosystem, which in this case we assume, by construction, is Exponential El Gamal.
Assume Adv extracts the private input j. We construct Adv′ that breaks the semantic
security of El Gamal.

This construction is very similar to that for BitProof. We construct W∗ that uses V∗

as a black box, extracting the challenge from V∗ in order to trick V∗ into accepting a
receipt for the wrong value of j. This is doable because, knowing chal, one can encrypt
an element of Zero but claim the index for the corresponding element of One. Note, for
emphasis, that this correspondence between elements of Zero and One is defined by the
specific challenge chal, which must thus be extracted before any real simulation ensues.
This allows W∗ to successfully convince V∗ that the receipt encodes a particular j (even
though it encodes j′).

Then, like for BitProof, we construct a special extractor X , whose job it is to simulate
the Prover in an interaction with W∗ based on an Exponential El Gamal encrypted bit
C, whose plaintext is unknown to X . X can clearly rewind W∗ to get chal ahead of
time. In addition, X must be able to create randomly distributed encrypted elements
of One or Zero, where the class membership of the element depends on the plaintext
of the input ciphertext C, which X cannot decrypt. This dependence must be such
that, when A performs its last verification – that i and ci encode the same bit –,
the random exponent of ci is cancelled out, because X will only know the appropriate
randomization values. We now describe how X can accomplish these operations.

Creating the Public Input. Recall that X receives C = Epk(b) as input, as well
as parameters z and indices j0 and j1, both in [1, z]. It is trivial for X to homomor-
phically compute C−1 = Epk(b̄). Note that C−1 has randomization exponent −r if the
randomization exponent of C is r. In this section, we now denote C̄ = C−1, because
will need to exponentiate this value, and a double-exponent notation risks confusion.
Next, X can create (c1, . . . , cz) exactly like in the BitProof case, for i ∈ [1, z]:

• if i �= j0 and i �= j1, select ri and compute ci = Epk(0; ri).

• if i = j0, select rj0 , and compute cj0 = REpk(C̄, rj0).

• if i = j1, select rj1 , and compute cj1 = REpk(C, rj1).

189

Thus, the generated public input (c1, . . . , cz) matches private input xpriv = jb, though
X does not know b.

Creating Encrypted Elements of One and Zero. Now, given a challenge vector
τc corresponding to c = chal, X needs to sample encryptions of elements ϑk or ζc−k,
depending on b, for any value of k. In addition, X must be able to reveal the random-
ization value of the related dot-product. To do this, X must sample the encrypted
elements with just the right randomization values so that, when the dot-product is
performed, the randomization values unknown to X cancel out. Thus, X proceeds as
follows, given c and k:

• consider the plaintext vectors ϑk and ζc−k

• select random exponents s = (s0, s1), and compute:

Qk,c =
(REpk

(
Cϑk[0](C̄)ζc−k[0]; s0

)
,REpk

(
Cϑk[1]C̄ζc−k[1]; s1

))
Note how, if C encrypts 1, Qk,c is the encryption of ϑk, but if C encrypts 0, Qk,c

is the encryption of ζc−k. In both cases, the randomization exponents for the
vector are:

(s0 + r(ϑk[0] − ζc−k[0]), s1 + r(ϑk[1] − ζc−k[1]))

Recall that the difference vector δk c = ϑk − ζc−k. Thus, we can rewrite the
random exponents of our sampled Qk,c as follows, noting again for emphasis that
r is unknown to X .

(s0 + rδk c[0], s1 + rδk c[1])

• Recall the computation that the Assistant will perform:

Q′
k,c = Qk,c − Epk(ζc−k;0)

which will yield an encryption of either the null vector if C encrypts 0, or the
difference vector δk c if C encrypts 1. In both cases, the random exponents remains
unchanged, since this is a homomorphic subtraction of a trivial encryption.

• When it comes time to perform the vector dot product, the plaintext of Q′
k,c · τc

will clearly be the null vector, given that Q′
k,c is either the null vector itself, or

the difference vector δk c. More interestingly, the single random exponent of this
dot product is:

190

(s0 + rδk c[0])τc[0] + (s1 + rδk c[1])τc[1] = s · τc + r(δk c · τc)

= s · τc

Thus, we have successfully sampled an encryption of either ζc−k or ϑk given parameters
c and k, based the ciphertext C. The extractor X can produce Qi for i ∈ [1, z] as
follows, knowing c = chal which it already extracted from W∗:

• if i �= j0 and i �= j1, pick a random element from Zero, and compute Qi as its
encryption with fresh random exponents.

• if i = j0, then pick a random k0 ∈ [1, λ[and compute Qk0,c with C and C̄ reversed.

• if i = j1, then pick a random k1 ∈ [1, λ[and compute Qk1,c as described above,
with C and C̄ as described.

Thus, if C = Epk(b), then the (Q1, . . . ,Qz) correspond to a proper set of encrypted
vectors for private input jb. The extractor X is able to reveal the randomization value
ρi,1 = si · τc. This means that X can now simulate the Prover’s actions to W∗, except
for one last step.

The remaining step is to reveal ρi,0 for i ∈ [1, z], as a means of proving that i = Qi

encrypts the same bit as ci, the input ciphertext. For i �= j0 and i �= j1, all random
factors are known to X , so there is no difficulty in revealing the proper ρi,0. We consider
now the cases of j0 and j1.

Recall that A will verify ρi,0 as follows

Q′
i · δki c

c
||δki c||2
i

Conveniently, we generated Q′
k0,c and Q′

k1,c such that they will correctly cancel out the
plaintext portion of the ciphertexts in the above equation, and yield an encryption of
0. As always, the interesting element is the randomization value. Recall that, with r
the random exponent for C, the random exponent for cj0 is r0 − r, and the random
exponent for cj1 is r1 + r (this should be clear from how cj0 and cj1 were computed).

Thus, for j0, the random exponent for the denominator above is:

||δk0 c||2(r0 − r))

Meanwhile, the random exponent for Q′
k0,c, which inverted the use of C and C̄ from

our generic equation for the random exponent of Qk,c, is:

191

(s0 − rδk0 c[0], s1 − rδk0 c[1])

Thus, the random exponent for the numerator of the fraction in the case of index j0 is:

s · δk0 c − r(||δk0 c||2)

The resulting random factor for the whole fraction thus sees the unknown r cancel out,
and yields:

ρj0,0 = s0 · δk0 c + r0||δk0 c||2

Notice how X can compute this value of ρj0,0, and can thus complete the simulation
for j0. One can go through the similar computation to show that, because the r also
cancels out in the case of j1:

ρj1,0 = s1 · δk1 c + r1||δk1 c||2

and X is able to full simulate the entire protocol perfectly.

Finally, we create Adv′, the semantic-security adversary, exactly like the one for BitProof.
Using two instances of X , each of which invokes its instance of W∗ with a homomor-
phically flipped ciphertext C, Adv′ can use C∗ on the outputs of both instances of
X to distinguish whether C encrypts 0 or 1, thus breaking the semantic security of
Exponential El Gamal.

�

5.7 Ensuring Well-Formed Ciphertexts/Ballots

In both BitProof and BetterBitProof, we have assumed that encryption inputs (c1, c2, . . . , cz)
are well-formed, meaning that, for exactly one value of j, cj = Epk(1), and for all other
values i, ci = Epk(0). The protocols have then focused on proving that the correct value of
j has been used. Here, we examine this assumption of well-formedness, and show why it is
reasonable.

5.7.1 The Voting Setting

In the voting setting, these ciphertext tuples (c1, c2, . . . , cz) are, in fact, encrypted ballots,
where the j position indicates the candidate of choice. Typically, these ballots will then
be processed through a mixnet, in which case they are eventually decrypted. It is quite
reasonable to assume that a malformed ballot will thus be detected at tallying time, at

192

which point one can ask the mix servers to back-track to the responsible voting machine
which will then get sanctioned in some way. The pressure on manufacturers to thus produce
well-formed ballots should be enough to ensure this aspect of the encrypted ballot.

5.7.2 Forcing Well-Formed Ciphertexts

If the assumption of eventual decryption and tracing is not enough, one can augment BitProof
or BetterBitProof with an additional proof of well-formed ciphertext tuples. As it turns out,
it is relatively easy to perform this proof in the AHIP setting: because the well-formed
nature of the ciphertexts is certainly not secret, one can fully rely on A to check it. The
only delicate aspect is to ensure that, in proving the well-formed nature of the ciphertext
tuple, P should not reveal j.

The approach for such a proof is to provide a proof of partial knowledge using the
technique of Cramer et al. [44] to prove that one of the following assertions is true:

• c1 = Epk(1), and ∀i �= 1, ci = Epk(0), or

• c2 = Epk(1), and ∀i �= 2, ci = Epk(0), or
...

• cz = Epk(1), and ∀i �= m, ci = Epk(0)

These proofs can either be performed interactively by having V provide a longer challenge
to account for this additional proof, or by using some non-interactive zero-knowledge proof
purely printed on the receipt, letting A deal with it entirely. (Vint,Vcheck) then only deals
with checking that the right index j has been selected.

5.8 Conclusion

We suggest that voting research should consider ballot casting assurance as a complement
to universal verifiability. While universal verifiability provides global auditability that votes
are counted correctly, ballot casting assurance provides individual assurance to Alice that
her vote “made it” to the input of the tally process as intended. If an error is detected, Alice
can revote until verifiable rectification.

We achieve ballot casting assurance with cryptographic schemes that implement secret
receipts. In particular, we proposed a model for cryptographic proofs where the verifier is
“only human,” and any assistant must not learn the crucial private input. We call these
protocols Assisted-Human Interactive Proofs (AHIPs). A number of questions remain. How
usable are these systems in real-world tests? How will revoting really work? In any case, we
believe that this issue should be considered as an integral part of voting system design and
evaluation.

193

194

Chapter 6

Public Mixing

This chapter is an extension of “How to Shuffle in Public” [7], which is joint work with
Douglas Wikström. This work is currently in submission.

6.1 Introduction

In ballot-preserving voting schemes, the anonymization step implemented by a mixnet is the
most complicated and time-intensive portion. Though recent mixnet algorithms [124, 70]
are remarkably efficient, the required trusted computing base remains complex: the shuffle
is performed on election day, but the shuffle’s details must remain secret. In practice, it
is not clear that this can be done securely, as a number of applied security experts have
noted [104].

In this chapter, we strive to reduce the trusted computing base of a mixnet, so that
the process on election day can be simplified. We use two major strategies. First, we
shift some computation from the private space to the public space, so that more tasks can
be performed by untrusted components and verified by straight-forward re-computation.
Second, we perform proofs before the election, so that election day becomes more predictable
and less error-prone.

There are limits to these strategies. It is clear that the election process—casting, anonymiza-
tion, tallying, and decryption—cannot be performed entirely by public computation: an
adaptive attacker could determine any single individual’s vote by running the victim’s en-
crypted vote through an entirely simulated election where the adversary knows all other vote
plaintexts. This is an inherent limitation of the abstract voting functionality: an adversary
who knows how a number of individuals voted can gain information about other votes simply
by following the normal election protocol.

Instead, we focus our attention on the shuffling phase: can we mix and rerandomize the
ciphertexts using public computation? If so, can we perform all proofs on this public source
code ahead of time? There is no inherent obstacle to this goal. An adversary can simulate
the ciphertext shuffling all he wants, voter privacy will be preserved by the decryption step,
which remains a private operation performed by trusted officials.

195

This goal is much like tallying by homomorphic aggregation, where anyone can perform
the homomorphic sum, but only officials can eventually decrypt the tally. In a sense, we are
looking to perform “homomorphic shuffling,” the encrypted computation of a permutation.

Program Obfuscation. One can interpret our goal as the program obfuscation of a reen-
cryption mixnet. As we have seen in Chapter 2, program obfuscation is the process of
“muddling” a program’s instructions to prevent reverse-engineering while preserving proper
function. Barak et al. first formalized obfuscation as simulatability from black-box access
[12]. Goldwasser and Tauman-Kalai extended this definition to consider auxiliary inputs [78].
Though simple programs have been successfully obfuscated [31, 173]. generalized program
obfuscation has been proven impossible in even the weakest of settings for both models (by
their respective authors).

Ostrovsky and Skeith [132] consider a weaker model, public-key obfuscation, where the
obfuscated program’s output is encrypted. In this model, they achieve the more complex
application of private stream searching. It is this model we consider for our constructions,
as it captures the security properties we need quite naturally. However, for completeness,
we also point out that our constructions can be modeled using the proposals of Barak et al.
and Goldwasser and Tauman-Kalai.

6.1.1 Contributions

We show how to obfuscate the shuffle phase of a mixnet. We begin with general assump-
tions and show how any additive homomorphic cryptosystem can provide public mixing.
Unfortunately, this generic construction results in an extremely inefficient mixnet, because
the verifiable decryption step portion requires generic zero-knowledge proofs. We focus then
on specific cryptosystems with additional useful properties. We show how special—and
distinct—properties of the Boneh-Goh-Nissim [23] and Paillier [133] cryptosystems enable
public mixing with sufficient efficiency to be practical.

We formalize our constructions in the public-key obfuscation model of Ostrovsky and
Skeith, whose indistinguishability property closely matches the security requirements of a
mixnet. We also show how to prove, in zero-knowledge, the correct obfuscation of a shuffle.
Finally, we describe a protocol that allows a set of parties to jointly and robustly generate
an obfuscated randomly chosen shuffle. These constructions require considerably more ex-
ponentiations, O(κN2) instead of O(κN), than private mixnet techniques. However, they
remain reasonably practical for precinct-based elections, where voters are anonymized in
smaller batches and all correctness proofs can be carried out in advance.

We also provide an overview of a different formalization for these same constructions,
using the obfuscation model of Barak et al. This approach is quite a bit more contrived
than the prior construction, as it turns out that the obfuscation property of Barak et al. and
Goldwasser-Tauman doesn’t fully capture the security we need from our mixnet functionality.
Thus, we are forced to prove a separate security property in addition to correct obfuscation.

196

Organization. In this extended introduction, we provide brief descriptions of our tech-
niques, including the construction from general assumptions, the BGN construction, and
the Paillier construction. The rest of the chapter delves into technical detail. Section 6.2
reviews some preliminary notation and the public-key obfuscation definition. Section 6.3
explores the construction from general assumptions, while sections 6.4 and 6.5 describe the
BGN and Paillier shuffles, respectively. Section 6.6 shows efficient protocols for proving the
correctness of these shuffle programs, while section 6.7 shows how a number of mutually
distrusting parties can jointly generate a shuffle program. Section 6.9 describe the efficiency
of these schemes, and Section 6.10 details the proof that these constructions realize a UC
mixnet. Finally, section 6.11 briefly explores how we could have obfuscated these programs
using the original model of Barak et al.

6.1.2 Notation

As defined in Chapter 2, we use ⊕ to denote homomorphic addition, ⊗ to denote homo-
morphic multiplication, and exponent notation to denote a constant number of repeated ho-
momorphic operations. Thus, for additive homomorphic cryptosystems, exponent notation
indicates homomorphic multiplication by a constant, while, for multiplicative homomorphic
cryptosystems, it denotes homomorphic exponentiation by a constant.

We denote ΣN the set of permutations of N elements, and Λπ = (λπ
ij) the column-

representation permutation matrix for permutation π. In other words, λπ
ij = 1 if j = π(i),

and 0 otherwise. This allows our notation of vector-by-matrix multiplication to be quite
natural: v × M , without transpose notation.

We denote by κc and κr additional security parameters such that 2−κc and 2−κr are
negligible, which determines the bit-size of challenges and random paddings in our protocols.

6.1.3 Overview of Techniques

The protocols presented here achieve homomorphic multiplication with a permutation ma-
trix, followed by a provable threshold decryption step typical of mixnets. Roughly, the
semantic security of the encryption scheme hides the permutation. We begin here with the
broad strokes of our constructions to provide an intuitive understanding of the protocols.
The generic protocol is represented in Figure 6-1.

Generic Construction. Consider two semantically-secure cryptosystems, CS = (G, E ,D)
and CS ′ = (G ′, E ′,D′), where CS ′ is additively homomorphic and the plaintext space of CS ′

can accommodate any ciphertext from CS. We use ⊕ to denote the homomorphic addition,
and exponent notation to denote homomorphic multiplication by a constant. A few highly
interesting properties emerge:

197

E ′
pk′(1)Epk(m) = E ′

pk′(1 · Epk(m)) = E ′
pk′(Epk(m))

E ′
pk′(0)Epk(m) = E ′

pk′(0 · Epk(m)) = E ′
pk′(0)

E ′
pk′(0) ⊕ E ′

pk′(Epk(m)) = E ′
pk′(Epk(m + 0)) = E ′

pk′(Epk(m)) .

Consider Λ̃π, the element-wise encryption of a permutation matrix Λπ = (λπ
ij) under E ′:

(λ̃π
ij)

def
=

(E ′
pk ′(λπ

ij)
)

Consider inputs (cj) to a shuffle as ciphertexts under E :

(cj)
def
=

(Epk(mj)
)

Homomorphic matrix multiplication can then be performed using the algebraic properties
noted above for multiplication and addition. Note that this construction works because the
homomorphic addition expects no more than one non-zero element to add. In other words,
this techniques works only on a permutation matrix:

(c′j)
def
=

N⊕
i=1

(λ̃π
ij)

ci

=
N⊕

i=1

(E ′
pk ′(λπ

ijci)
)

=
(E ′

pk ′(cπ(j))
)

=
(E ′

pk ′
(Epk(mπ(j))

))

The shuffled result is doubly encrypted, and needs sequential decryption using D′
sk ′ and

Dsk . Unfortunately, in a mixnet construction, decryption must be verifiable, and double-
decryption is particularly inefficient to prove without revealing the intermediate ciphertext.
Of course, revealing the intermediate ciphertext Epk(mj) is not an option, as it exactly
matches the corresponding input and immediately leaks the permutation. As a result, the
only construction based on generic assumptions requires generic zero-knowledge proofs, which
are prohibitively expensive.

To solve this problem, we propose two specific constructions. The BGN-based con-
struction enables homomorphic matrix multiplication with singly-encrypted results. The
Paillier-based constrution enables homomorphic matrix multiplication with reencryption on
the inner ciphertext, which allows us to reveal the intermediate ciphertext at decryption
time for a much more efficient proof.

198

Λ
π

⎡
⎢⎣

λ1,1 . . . λ1,N

.

.

.

.

.

.

.

.

.

λN,1 . . . λN,N

⎤
⎥⎦

⎡
⎢⎣

λ̃1,1 . . . λ̃1,N

.

.

.
. . .

.

.

.

λ̃
N,1 . . . λ̃

N,N

⎤
⎥⎦E

Λ̃
π

[
c1 . . . c

N

]
[

c′
π(1)

. . . c′
π(N)

]⎡
⎢⎣

λ̃1,1 . . . λ̃1,N

.

.

.
. . .

.

.

.

λ̃
N,1 . . . λ̃

N,N

⎤
⎥⎦

Figure 6-1: Public Mixing: a permutation π is encoded in matrix form as Λπ, then element-
wise encrypted as Λ̃π. Shuffling is accomplished by homomorphic matrix multiplication,
which is implemented in different ways depending on the underlying cryptosystem.

BGN Construction. The BGN cryptosystem offers a normal additive homomorphism
and a one-time multiplicative homomorphism. If ciphertexts are homomorphically multi-
plied, they are mapped into a different group with its own encryption and decryption algo-
rithms using the same keypair. Thus, verifiability remains a single-layer proof. The specific
homomorphic properties are thus:

Epk(m1) ⊗ Epk(m1) = E ′
pk(m1m2)

Epk(m1) ⊕ Epk(m2) = Epk(m1 + m2)

E ′
pk(m1) ⊕ E ′

pk(m2) = E ′
pk(m1 + m2).

Here, both the matrix and the inputs can be encrypted using the same encryption algo-
rithm and public key:

(λ̃π
ij)

def
=

(Epk(λ
π
ij)

)

(cj)
def
=

(Epk(mj)
)

and the matrix multiplication uses both homomorphisms, noting that only one multiplication
is required on the arithmetic path from one input to one output:

199

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0

0

0

0

0

[m1 m2 m3 m4 m5

] [m2 m4 m1 m5 m3

]

Figure 6-2: Paillier Shuffle: Two layers of encryption, an outer layer shown in orange, and an
inner layer shown in blue, are used to provide mixing. The inputs to be shuffled are encrypted
using the inner layer only. The 0’s of the permutation matrix are encrypted using the outer
layer only. The 1’s of the permutation matrix are encrypted as double-layer encryptions of
0. The resulting ciphertexts are also double-layer encryptions of the now-shuffled plaintexts.
Not diagrammed here is the fact that the inner-layer of the input ciphertexts is reencrypted
by the homomorphic matrix multiplication (intuitively, by the inner-layer encryption of the
double-encrypted zeros.)

(c′j)
def
=

N⊕
i=1

(λ̃π
ij) ⊗ ci

=
N⊕

i=1

(Epk(λ
π
ij) ⊗ Epk(mi)

)

=
N⊕

i=1

(E ′
pk ′(λπ

ijmi)
)

=
(E ′

pk ′(mπ(j))
)

This list of singly-encrypted ciphertexts under E ′ lends itself to efficient, provable decryption.

Paillier Construction. The Paillier cryptosystem supports layered encryption, where
a ciphertext can be encrypted again using the same public key. Most interestingly, the
homomorphic properties are preserved in the inner layer; in addition to the generic layered
homomorphic properties we have the special relation

E ′
pk (Epk(0; r))Epk(m;s) = E ′

pk (Epk(0; r)Epk(m; s))

= E ′
pk (Epk(m; r + s)) .

Thus, we can use E ′ encryption for the permutation matrix, except that, instead of E ′
pk(1)

to represent a one, we use E ′
pk(Epk(0, r)) with a random r:

200

(λ̃π
ij) =

(E ′
pk

(
λπ

ijEpk(0; rij)
))

The inputs are normal encryptions under E :

(cj)
def
=

(Epk(mj; sj)
)

And the matrix multiplication is similar to the general assumption construction:

(c′j)
def
=

N⊕
i=1

(λ̃π
ij)

ci

=
N⊕

i=1

(E ′
pk ′(λπ

ijEpk(0; rij)ci)
)

=
(E ′

pk ′(Epk(0; rπ(j),j)cπ(j))
)

=
(E ′

pk ′
(Epk(mπ(j); sπ(j) + rπ(j),j)

))

Notice how the input ciphertext Epk(mj) is effectively reencrypted by the encryption of 0
already wrapped inside the outer-encryption. Thus, decryption can reveal this reencrypted
intermediate ciphertext safely, and prove decryption in two efficient steps. The Paillier
mixing by homomorphic matrix multiplication is represented in Figure 6-2.

6.1.4 Sizing the Matrix and Filling in Empty Slots

In a typical election setting, and in many other applications of public mixing, one may not
know ahead of time the exact number N of inputs that will need to be shuffled. In these
situations, an obfuscated shuffle program must be created with N as the upper bound of
what can be reasonably expected. In the case of voting, a precinct would need a shuffle
program sized for the number of eligible voters.

Then, when it comes time to mix N ′ < N inputs, the N − N ′ empty slots are filled in
with the trivial encryption of a null message, where the null plaintext is agreed upon ahead
of time. These null messages will be recognized upon decryption and discarded. Of course,
as everyone will know which inputs and which outputs were null, some information regarding
the original permutation will be revealed. However, the rest of the permutation—the portion
that actually matters— remains completely secret.

6.2 Preliminaries

In this chapter, we make significant use of homomorphic cryptosystems, as defined in Chapter
2. We review here some additional concepts that are specific to the contributions of this
chapter.

201

6.2.1 Functionalities

We consider sets of of circuits that perform a type of operation. These circuits are grouped
into sets according to security parameter, and these sets are grouped into a single family of
all circuits for the given “functionality.”

Definition 6-1 (Functionality) A functionality is a family F = {Fκ}κ∈ of sets of cir-
cuits such that there exists a polynomial s(·) such that |F | ≤ s(κ) for every F ∈ Fκ.

Merely defining a functionality’s existence is not enough to provide constructions. A
functionality must also be sampleable, meaning that there exists a PPT sampling algorithm
for constructing an instance of such a functionality with the appropriate security parameter.

Definition 6-2 (Sampleable Functionality) A functionality is sampleable if there exists
S ∈ PPT such that S(1k) outputs F ∈ Fκ, and the distribution of S(1k) is uniform over Fκ.

6.2.2 Public-Key Obfuscation

We use a variation of the definition of public-key obfuscation of Ostrovsky and Skeith [132].
Our definition differs in that the functionality takes the public and secret keys as input. We
note, of course, that a reasonable obfuscator will not hard-wire any secret-key information
into its output program, as this would hardly be secure. However, we consider that the
secret key may be necessary to create the obfuscated program.

Intuitively, a public-key obfuscator produces a program of reasonable size whose function
is identical to the original functionality, except the outputs are encrypted. For security, the
obfuscator should offer a kind of indistinguishability: two obfuscations of different function-
alities should be indistinguishable. We now formalize this intuition.

Definition 6-3 (Public-Key Obfuscator) An algorithm O ∈ PPT is a public-key obfus-
cator for a functionality F with respect to a cryptosystem CS = (G, E ,D) if there exists a
decryption algorithm D′ ∈ PT and a polynomial s(·) such that for every κ ∈ , F ∈ Fκ,
(pk, sk) ∈ G(1κ), and x ∈ {0, 1}∗,

1. Correctness. D′
sk(O(1κ, pk, sk, F)(x)) = F (pk, sk, x).

2. Polynomial blow-up. |O(1κ, pk, sk, F)| ≤ s(|F |).

Example 1 Suppose we want to obfuscate the functionality that “multiplies by a.” Select
CS, a multiplicative homomorphic cryptosystem and generate (pk, sk) ∈ G(1κ) such that
a ∈ Mpk. The functionality is simply Fa(pk, sk, x) = ax, where x ∈ Mpk. An obfuscator for
the functionality F of such circuits is simply a circuit containing the hard-coded ciphertext
Epk(a) which, on input x ∈ Mpk, outputs Epk(a)x = Epk(ax).

202

Remark 6-1 The above definition considers decryption algorithm D′ �= D to accommodate
obfuscators which require a slightly different decryption algorithm than the one that would
decrypt the inputs to the functionality. Consider, specifically, the BGN multiplicative homo-
morphism, which takes encryptions under E and produces encryptions under E ′.

We now consider the security property desired from an obfuscator, in exactly the same
way as Ostrovsky and Skeith. First, we define an indistinguishability experiment much like
that of semantic security, where the adversary selects two functionalities from the prescribed
family and is challenged with the obfuscation of one of them. If no adversary can distinguish
between the experiment that obfuscates the first functionality and the experiment that ob-
fuscates the second functionality, the obfuscator is said to be polynomially indistinguishable.

Experiment 2 (Indistinguishability, Expoind−b
F ,CS,O,Adv(κ))

(pk, sk) ← G(1κ)

(F0, F1, state) ← Adv(choose, pk),

d ← Adv(O(1κ, pk, sk, Fb), state)

If F0, F1 ∈ Fκ return d, otherwise 0.

Definition 6-4 (Indistinguishability) A public-key obfuscator O for a functionality F
with respect to a cryptosystem CS = (G, E ,D) is polynomially indistinguishable if there exists
a negligible function ν(·) such that:

|Pr[Expoind−0
F ,CS,O,Adv(κ) = 1] − Pr[Expoind−1

F ,CS,O,Adv(κ) = 1]| < ν(κ)

The obfuscator in Example 1 is polynomially indistinguishable if CS is semantically secure.

6.2.3 Shuffles

We now review the two major types of shuffle: decryption and reencryption shuffles. For our
purposes in this chapter, we formulate these as functionalities that we intend to obfuscate.

The most basic form of a shuffle is the decryption shuffle, as first introduced by Chaum
[39]. A decryption shuffle takes a list of ciphertexts, decrypts them and outputs them in
permuted order. Thus, given an input size N , the decryption shuffle is indexed by its
permutation π.

Definition 6-5 (Decryption Shuffle) A CS-decryption shuffle, for a cryptosystem CS =
(G, E ,D) is a functionality DSN = {DSN(κ),κ}κ∈ , where N(κ) is a polynomially bounded
and polynomially computable function such that for every κ ∈ , DSN(κ),κ = {DSπ}π∈ΣN(κ)

,
and for every (pk, sk) ∈ G(1κ), and c1, . . . , cN(κ) ∈ Cpk the circuit DSπ is defined by

DSπ(pk, sk, (c1, . . . , cN(κ))) = (Dsk(cπ(1)), . . . ,Dsk(cπ(N(κ)))) .

203

Another common way to implement a mixnet is to use the re-encryption-permutation
paradigm introduced by Park et al. [134]. Using this approach, the ciphertexts are first
re-encrypted and permuted, and then decrypted. In this definition, we capture the actions
of the re-encryption and permutation phase. Given an input size N , a reencryption shuffle
is indexed by its permutation π and a set of N randomization values r1, r2, . . . , rN . As the
public key pk is not part of the functionality definition, the {ri} are sampled as bit strings
and later mapped into Rpk .

Definition 6-6 (Re-encryption Shuffle) A CS-re-encryption shuffle, for a homomorphic
cryptosystem CS = (G, E ,D) is a functionality RSN = {RSN(κ),κ}κ∈ , where N(κ) is a
polynomially bounded and polynomially computable function such that for every κ ∈ ,
RSN(κ),κ = {RSπ,r}π∈ΣN(κ),r∈({0,1}∗)N(κ), and for every (pk, sk) ∈ G(1κ), and c1, . . . , cN(κ) ∈
Cpk the circuit RSπ,r is defined by

RSπ(pk, sk, (c1, . . . , cN(κ))) = (REpk(cπ(1); r1), . . . ,REpk(cπ(N(κ)); rN(κ))) .

6.3 Constructing and Obfuscating a Generic Decryp-

tion Shuffle

We show that, in principle, all that is needed to achieve obfuscated shuffling is an addi-
tively homomorphic cryptosystem. Consider two semantically-secure cryptosystems, CS =
(G, E ,D) and CS ′ = (G ′, E ′,D′), with CS ′ exhibiting an additive homomorphism denoted ⊕.
Suppose that ciphertexts from CS can be encrypted under CS ′ for all (pk, sk) ∈ G(1κ) and
(pk′, sk′) ∈ G ′(1κ), i.e., Cpk ⊆ M′

pk′ . The following operations are then possible and, more
interestingly, indistinguishable thanks to the semantic security of both cryptosystems:

E ′
pk′(1)Epk(m) = E ′

pk′(Epk(m))

E ′
pk′(0)Epk(m) = E ′

pk′(0).

6.3.1 The Obfuscator

Consider a permutation matrix Λπ = (λπ
ij) corresponding to a permutation π. Consider its

element-wise encryption under CS ′ with public key pk′ and a corresponding matrix of ran-
domization values (rij) ∈ R′N2

pk′ , i.e., Λ̃π = (E ′
pk′(λπ

ij, rij)). Then, given c = (c1, c2, . . . , cN) ∈
CN

pk, it is possible to perform homomorphic matrix multiplication with a permutation matrix
as:

204

c � Λ̃π def
=

(
N⊕

i=1

(λ̃π
ij)

ci

)

=

(
N⊕

i=1

(E ′
pk ′(ciλ

π
ij)

))

=
(E ′

pk ′(cπ(j))
)

=
(E ′

pk ′
(Epk(mπ(j))

))
Thus, we have:

Dsk(D′
sk′(c � Λ̃π)) = (mπ(1), mπ(2), . . . , mπ(N)) .

We now define an obfuscator based on this homomorphic matrix multiplication. As
the two layers of decryption must be performed at once by the mixnet, the obfuscator’s
decryption algorithm must perform both decryption layers, and the outputs of the obfuscated
functionality will be plaintexts. In other words, we are dealing here with the obfuscation of
a decryption shuffle.

Definition 6-7 (Obfuscator) The obfuscator O for the decryption shuffle DSN :

• takes input (1κ, (pk, pk′), (sk, sk′),DSπ), where (pk, sk) ∈ G(1κ), (pk′, sk′) ∈ G ′(1κ)
and DSπ ∈ DSN(κ),κ,

• computes Λ̃π = E ′
pk′(Λπ), and

• outputs a circuit with the hard-coded encrypted matrix Λ̃π and which, on input c =
(c1, . . . , cN(κ)) computes and outputs c′ = c � Λ̃π.

Technically, this is a decryption shuffle of a new cryptosystem CS ′′ = (G ′′, E ,D), where
CS ′′ executes the original key generators and outputs ((pk, pk′), (sk, sk′)) and the original
algorithms E and D simply ignore (pk′, sk′). We give a reduction without any loss in security
for the following straight-forward proposition.

Proposition 6-1 If CS ′ is semantically secure then O is polynomially indistinguishable.

Proof. We prove this by contradiction.
Assume the existence of Adv, a successful arbitrary against the polynomial indistinguisha-

bility experiment with obfuscator O. We now construct an adversary Adv′ which defeats the
semantic security of the cryptosystem CS ′ using Adv as a black box. In this description,
“the experiment” refers to the semantic security experiment which Adv′ is trying to defeat.
Meanwhile, Adv′ simulates the O indistinguishability experiment to Adv:

205

• Adv′ receives pk from the experiment and forwards it to Adv.

• Adv outputs two shuffles, DSπ0 and DSπ1 , which imply permutation matrices Λπ0 and
Λπ1 ; Adv′ outputs plaintexts 0 and 1 to the experiment.

• on input from the experiment c = E ′
pk(b), Adv′ prepares c̄ = E ′

pk(b̄) homomorphically.

Adv′ then constructs an encrypted matrix Λ̃π2 as follows:

– for values of i, j where Λπ0
ij = Λπ1

ij = bij, Λ̃π2
ij = E ′

pk(bij).

– for values of i, j where Λπ0
ij �= Λπ1

ij ,

Λ̃π2
ij = REpk(c) when Λπ0

ij = 0, and

Λ̃π2
ij = REpk(c̄) when Λπ0

ij = 1.

– thus, Λ̃π2 is the encryption of Λπb .

Adv′ then provides Λ̃π2 as the simulated challenge to Adv.

• on response b′ from Adv, Adv′ outputs guess b′ to the experiment.

Then, by construction, Adv′ succeeds in distinguishing the two semantic security experi-
ments with the exact same probability that Adv succeeds in breaking the indistinguishability
of the obfuscator. By contradiction, the proposition follows.

�

6.3.2 Limitations of the Generic Construction

An encrypted matrix is not necessarily an encrypted permutation matrix. Before it can be
used, Λ̃π requires a proof that it is indeed the encryption of a permutation matrix. In this
generic construction, this can be accomplished by proving that each element is the encryption
of either 0 or 1, and that the homomorphic column- and row-wise sums are encryptions of
1, using a Chaum-Pedersen-like proof of plaintext [37] and Cramer et al.’s proof of partial
knowledge [44]. Unfortunately, this approach requires O(N2) proofs.

Even if we prove that Λ̃π is correctly formed, the post-shuffle verifiable decryption of
E ′

pk′(Epk(mi)) to mi is prohibitively expensive: revealing the inner ciphertext is out of the
question, as it would leak the shuffle permutation, which leaves us only with generic proof
techniques. Instead of exploring this area further, we turn to vastly more promising efficient
constructions.

6.4 Obfuscating a BGN Decryption Shuffle

We now show how to obfuscate a decryption shuffle for the Boneh-Goh-Nissim (BGN) cryp-
tosystem [23] by exploiting both its additive homomorphism and its one-time multiplicative
homomorphism.

206

6.4.1 The BGN Cryptosystem

Denote the BGN cryptotystem as CSbgn = (Gbgn, Ebgn,Dbgn). BGN operates in two groups
G1 and G2, both of order n = q1q2, where q1 and q2 are distinct prime integers. We use
multiplicative notation in both G1 and G2, and denote g a generator in G1. The groups G1

and G2 exhibit a polynomial-time computable bilinear map e : G1 × G1 → G2 such that
e (g, g) generates G2. Bilinearity implies that ∀u, v ∈ G1 and ∀a, b ∈ Z, e

(
ua, vb

)
= e (u, v)ab.

Key generation. On input 1κ, Gbgn generates parameters (q1, q2, G1, g, G2, e (·, ·)) as above
such that n = q1q2 is a κ-bit integer. It chooses u ∈ G1 randomly, defines h = uq2 , and
outputs a public key pk = (n, G1, G2, e (·, ·) , g, h) and secret key sk = q1.

Encryption. On input pk and m ∈ Zn, Ebgn selects r
R←− Zn and outputs c = gmhr ∈ G1.

Decryption. On input sk = q1 and c ∈ G1, Dbgn outputs m′ = loggq1 (c
q1).

Because decryption computes a discrete logarithm, the plaintext space must be restricted
considerably. Corresponding algorithms E ′bgn and D′bgn perform encryption and decryption
in G2 using the generators G = e (g, g) and H = e (g, h). The BGN cryptosystem is seman-
tically secure under the Subgroup Decision Assumption, which states that no Adv ∈ PT∗ can
distinguish between a uniform distribution on G1 and a uniform distribution on the unique
order q1 subgroup in G1.

Homomorphisms. The BGN cryptosystem is additively homomorphic:

c1 ⊕ c2
def
= c1c2

= Ebgn
pk (m1; r1)Ebgn

pk (m2; r2)

= gm1hr1gm2hr2

= gm1+m2hr1+r2

= Ebgn
pk (m1 + m2; r1 + r2)

In addition, the BGN cryptosystem offers a multiplicative homomorphism for ciphertexts
in G1, using the bilinear map. We denote α = logg u where u is the base chosen during key
generation:

207

c1 ⊗ c2
def
= e (c1, c2)

= e
(
Ebgn

pk (m1; r1), Ebgn
pk (m2; r2)

)
= e (gm1hr1 , gm2hr2)

= e (g, g)m1m2 e (g, h)m1r2+m2r1 e (h, h)r1r2

= Gm1m2Hm1r2+m2r1(Hαq2)r1r2

= E ′bgn
pk (m1m2; m1r2 + m2r1 + αq2r1r2)

The result is a ciphertext in G2 which cannot be efficiently converted back to an equivalent
ciphertext in G1, under the Bilinear One-Way Assumption, which derives from the DDH
assumption on G2. Thus, the multiplicative homomorphism can be evaluated only once,

after which only homomorphic additions are possible. Thus, we also define c1 ⊕ c2
def
= c1c2

for c1, c2 ∈ G2
2.

6.4.2 The Obfuscator

Our obfuscator is based on the observation that matrix multiplication only requires an arith-
metic circuit with multiplication depth 1. Thus, the BGN cryptosystem can be used for
homomorphic matrix multiplication. Consider a N1 × N2-matrix Ã = (ãij) = (Ebgn

pk (aij))

and a N2 × N3-matrix B̃ = (b̃jk) = (Ebgn
pk (bjk)), and let A = (aij) and B = (bjk). We define

homomorphic matrix multiplication by

Ã � B̃
def
=

(
N2⊕
j=1

ãij ⊗ b̃jk

)

and conclude that:

D′bgn
sk (Ã � B̃) =

(
N2∑
j=1

aijbjk

)
= AB.

As in the general case, the resulting elements of this homomorphic matrix multiplication
are meant to be decrypted each in one operation and proof – though in this case it really
is one layer of decryption, rather than two layers that need to be unwrapped and proved as
one!

Thus, we construct an obfuscator for a BGN-based decryption shuffle. This obfuscator
simply samples the randomization values required to encrypt the permutation matrix, then
hard-codes this matrix into the obfuscated circuit, so that it can perform the homomorphic
matrix multiplication.

208

Definition 6-8 (Obfuscator) The obfuscator Obgn for the decryption shuffle DS bgn
N takes

input (1κ, pk, sk,DS bgn
π), where (pk, sk) ∈ Gbgn(1κ) and DS bgn

π ∈ DS bgn
N(κ),κ, computes Λ̃π =

Ebgn
pk (Λπ), and outputs a circuit with Λ̃π hard-coded such that, on input c = (c1, . . . , cN(κ)), it

outputs c′ = c � Λ̃π.

We have the following corollary from Proposition 6-1.

Corollary 6-1 The obfuscator Obgn for DS bgn
N is polynomially indistinguishable if the BGN

cryptosystem is semantically secure.

6.5 Obfuscating a Paillier Re-encryption Shuffle

We now show how to obfuscate a re-encryption shuffle for the Paillier cryptosystem [133]
by exploiting its additive homomorphism and its generalization introduced by Damg̊ard
et al. [48]. In doing so, we expose a previously unnoticed homomorphic property of this
generalized Paillier construction. We note that this property may be useful for other attempts
at obfuscation.

6.5.1 The Paillier Cryptosystem

We denote the Paillier cryptosystem CSpai = (Gpai, Epai,Dpai) and refer the reader to Chapter
2 which describes its setup. Recall that the Paillier cryptosystem is semantically secure
under the Decision Composite Residuosity Assumption. A Paillier public key is (n, g) with
plaintext space Zn and ciphertext space Zn2 . Recall also the Paillier encryption operation:
c = Epai

pk (m; r) = gmrn mod n2.

Generalized Paillier. Damg̊ard et al. [48] generalize the Paillier cryptosystem, replacing
computations modulo n2 with computations modulo ns+1 and plaintext space Zn with Zns .
Damg̊ard et al. prove that the semantic security of the generalized scheme follows from the
semantic security of the original scheme for s > 0 polynomial in the security parameter,
though we only exploit the cases s = 1, 2. We write Epai

ns+1(m) = gmrns
mod ns+1 for gener-

alized encryption to make explicit the value of s used in a particular encryption. Similarly
we write Dpai

p,s(c) for the decryption algorithm and we use Mns+1 and Cns+1 to denote the
corresponding message and ciphertext spaces.

Alternative Encryption. There are natural and well-known alternative encryption algo-
rithms for the Paillier cryptosystem. It is easy to see that one can pick the random element
r ∈ Z∗

ns instead of in Z∗
n. If hs is a generator of the group of nsth residues, then we may de-

fine encryption of a message m ∈ Zns as gmhr
s mod ns. This alternative form is particularly

useful for practical optimizations in computing Paillier ciphertexts.

209

Homomorphisms. The Paillier cryptosystem is additively homomorphic. Furthermore,
the recursive structure of the Paillier cryptosystem allows a ciphertext Epai

n2 (m) ∈ Cn2 = Z∗
n2

to be viewed as a plaintext in the group Mn3 = Zn2 that can be encrypted using a generalized
version of the cryptosystem, i.e., we can compute Epai

n3

(Epai
n2 (m)

)
. Furthermore, the nested

cryptosystems preserve the group structures over which they are defined. In other words we
have

Epai
n3

(
Epai

n2 (0, r)
)Epai

n2 (m,s)

= Epai
n3

(
Epai

n2 (0, r)Epai
n2 (m, s)

)
= Epai

n3

(
Epai

n2 (m, r + s)
)

.

Note how this homomorphic operation is similar to the operations described under general
assumptions, except the inner “1” has been replaced with an encryption of 0. As a result,
though the output is also a double-encrypted mi, a re-encryption has occurred on the inner
ciphertext.

6.5.2 The Obfuscator

We use the additive homomorphism and the special homomorphic property exhibited above
to define a form of homomorphic matrix multiplication for encrypted Paillier matrices. AS in
the general case—and unlike the BGN construction—this matrix multiplication only works
when one of the matrices is a permutation matrix.

Given an N -permutation matrix Λπ = (λπ
ij), and randomness r, s ∈ (Z∗

n)N×N , we prepare

the element-wise encryption of this matrix under Epai
n3 , with Epai

n2 encryptions of 0 where 1’s
would appear:

Λ̃π = (λ̃π
ij) =

(
Epai

n3

(
λπ

ijEpai
n2 (0; rij); sij

))
.

Consider c = (c1, . . . , cN) a vector of encrypted inputs under Epai
n2 , such that ci =

Epai
n2 (mi; ti). The matrix multiplication operation is then defined using the above interesting

210

operations:

c � Λ̃π def
=

(
N⊕

i=1

(λ̃π
ij)

ci

)

=

(
N⊕

i=1

Epai
n3

(
λπ

ijEpai
n2 (0; rij); sij

)ci

)

=

(
N⊕

i=1

Epai
n3

(
ciλ

π
ijEpai

n2 (0; rij); s
ci
ij

))

=

(
Epai

n3

(
cπ(j)Epai

n2 (0; rπ(j),j);
N∏

i=1

sci
ij

))

=

(
Epai

n3

(
Epai

n2 (mπ(j); tπ(j)rπ(j),j);
N∏

i=1

sci
ij

))

Noting that we have effectively reencrypted the inner ciphertext, this can be written in
the following simpler form for clarity:

c � Λ̃π =
(
Epai

n3

(
Epai

n2 (mπ(j))
))

Note that this immediately gives:

Dpai
p,2(Dpai

p,3(c � Λ̃π)) = (mπ(1), . . . , mπ(N)) .

In other words, we can do homomorphic matrix multiplication with a permutation matrix
using layered Paillier, but we stress that the above matrix multiplication does not work for
general matrices. We are now ready to define the obfuscator for the Paillier-based shuffle.

We note that there is a functional difference between this shuffle and the two prior con-
structions. Here, the decryption algorithm of the obfuscation process only needs to remove
the outer layer of encryption, leaving ciphertext outputs under Epai

n2 . The second decryption
is technically not part of the obfuscation phase. Thus, we are effectively obfuscation a reen-
cryption shuffle here. We note again, for clarity, that this approach is not feasible in the case
of general assumptions, because revealing this intermediate ciphertext immediately leaks the
permutation.

The obfuscator for this shuffle needs to sample N randomization factors for the inner
encryptions of 0, which represent the 1’s of the permutation matrix, and N2 randomization
factors for the outer encryptions of every matrix element.

Definition 6-9 (Obfuscator) The obfuscator Opai for the re-encryption shuffle RS pai
N takes

input a tuple (1κ, n, sk,RS pai), where (n, p) ∈ Gpai(1κ) and RS pai ∈ RS pai
N(κ),κ, computes

211

Λ̃π = (Epai
n3 (λπ

ijEpai
n2 (0, rij), sij)), and outputs a circuit with hardcoded Λ̃π that, on input c =

(c1, . . . , cN(κ)), outputs c′ = c � Λ̃π.

Proposition 6-2 The obfuscator Opai for RS pai
N is polynomially indistinguishable if the Pail-

lier cryptosystem is semantically secure.

Proof.
This proof proceeds exactly like the proof of Proposition 6-1, except the two plaintexts

submitted to the semantic security are 0 and some randomly selected encryption of 0 (instead
of 1). As this proof is slightly trickier than the previous one, we present the details. We
prove this by contradiction.

Assume the existence of Adv, a successful arbitrary against the polynomial indistinguisha-
bility experiment with obfuscator Opai. We now construct an adversary Adv′ which defeats
the semantic security of the cryptosystem CSpai, specifically using Epai

n3 , using Adv as a black
box. In this description, “the experiment” refers to the semantic security experiment which
Adv′ is trying to defeat. Meanwhile, Adv′ simulates the Opai indistinguishability experiment
to Adv:

• Adv′ receives pk from the experiment and forwards it to Adv.

• Adv′ receives from Adv two shuffles, RSπ0 and RSπ1 , which imply permutation matrices
Λπ0 and Λπ1 . Adv′ picks r ∈ Rpk ,n2 and outputs messages m0 = 0 and m1 = Epai

n2 (0; r)
to the experiment. Note how m1 is a Paillier ciphertext, treated here as a plaintext
(since Adv′ will attempt to distinguish ciphertexts under Epai

n3 .)

• on input from the experiment c = Epai
n3 (mb) for bit b, Adv′ prepares c̄ = Epai

n3 (mb̄)

homomorphically. Recall that Epai
n3 is additively homomorphic, so it is easy to homo-

morphically compute m1 −mb, which toggles the ciphertext between m0 and m1. Adv′

then constructs an encrypted matrix Λ̃π2 as follows:

– for values of i, j where Λπ0
ij = Λπ1

ij = 0, Λ̃π2
ij = Epai

n3 (0) with fresh randomness.

– for values of i, j where Λπ0
ij = Λπ1

ij = 1, Λ̃π2
ij = Epai

n3 (Epai
n2 (0)) with fresh randomness.

– for values of i, j where Λπ0
ij = 0 but Λπ1

ij = 1, Λ̃π2
ij = cE

pai

n2 (0)Epai
n3 (0) with fresh

randomness.

– for values of i, j where Λπ0
ij = 1 but Λπ1

ij = 0, Λ̃π2
ij = c̄E

pai

n2 (0)Epai
n3 (0) with fresh

randomness.

– thus, Λ̃π2 is the encryption of Λπb ; note how we perform outer and inner reencryp-
tion on the ciphertext received from the experiment. This is crucial to simulate the
obfuscation indistinguishability experiment to Adv, since, in the real experiment,
the inner encryptions of 0 are all randomly selected, as are the randomization
values for the outer encryptions.

212

⎡
⎢⎣

λ̃1,1 . . . λ̃1,N

.

.

.
. . .

.

.

.

λ̃N,1 . . . λ̃N,N

⎤
⎥⎦

⎡
⎢⎣

λid
1,1 . . . λid

1,N

.

.

.
. . .

.

.

.

λid
N,1

. . . λid
N,N

⎤
⎥⎦ E

⎡
⎢⎣

λ̃
id
1,1

. . . λ̃
id
1,N

...
. . .

...

λ̃
id
N,1

. . . λ̃
id
N,N

⎤
⎥⎦

⎡
⎢⎣

λ̃
id
1,1

. . . λ̃
id
1,N

...
. . .

...

λ̃
id
N,1

. . . λ̃
id
N,N

⎤
⎥⎦

Figure 6-3: Proof of Correct Construction for a Single Prover: Starting with the trivial
encryption of the identity matrix, the prover demonstrates knowledge of a permutation and
randomization values in shuffling the columns of the matrix. This shows that the resulting
matrix is indeed a permutation matrix.

Adv′ then provides Λ̃π2 as the simulated challenge to Adv.

• on response b′ from Adv, Adv′ outputs guess b′ to the experiment.

Then, by construction, Adv′ succeeds in distinguishing the two semantic security experi-
ments with the exact same probability that Adv succeeds in breaking the indistinguishability
of the obfuscator. By contradiction, the proposition follows.

�

6.6 Proving Correctness of Obfuscation

We now focus on proving the correctness of a BGN or Paillier obfuscated shuffle. We assume,
for now, that a single party generates the encrypted matrix, though the techniques described
here are immediately applicable to the distributed generation and proofs of the shuffles, which
we detail in the next section.

6.6.1 Overview of the Proof Techniques

Shuffling Columns of a Matrix. We note the interesting property that, starting with a
column-based permutation matrix Λπ, shuffling the columns of the matrix according to a new
permutation π′ yields another permutation matrix, Λπ′◦π, corresponding to the composed

213

permutation π′ ◦ π. In particular, a column shuffle of the identity matrix according to
permutation π yields the column-based permutation matrix π. Intuitively, this is how we
will prove that an encrypted matrix is a permutation matrix: by proving that it is the result
of a column-shuffle of the identity matrix, as diagrammed in Figure 6-3.

More precisely, for either cryptosystem, start with a trivially encrypted identity matrix,
Λ̃id = Epk(Λ

id, 0∗), and let the prover perform a zero-knowledge proof of knowledge of the
permutation π and randomization values (rij) that map Λ̃id to Λ̃π, the encrypted permutation
whose correctness we want to prove. The formal relation for this proof is defined as follows.

Definition 6-10 Denote by Rmrp the relation consisting of pairs ((1κ, pk, Ã, Ã′), r) such that
Ã = (ãij) ∈ CN×N

pk , Ã′ = (ã′
ij) =

(REpk(ai,π(j), rij)
)
, r ∈ RN×N

pk , and π ∈ ΣN .

Generating the Initial Identity Matrix. In the BGN shuffle, the starting identity
matrix we seek can be simply Ã = Λ̃id = Epk(Λ

id, 0∗). The prover then shuffles and reencrypts
the columns of Λ̃id and proves knowledge of a witness in Rmrp.

Recall, however, that, where the BGN matrix is composed of encryptions of 1, the Pail-
lier matrix contains outer encryptions of different inner encryptions of zero. These inner
ciphertexts must remain secret from outside observer, as they are exactly the randomiza-
tion values from the inputs to the outputs of the overall shuffle. If they leak, so does the
shuffle permutation. Thus, in the Paillier case, we begin by generating and proving correct
a list of N double-encryptions of zero. We construct a proof of double-discrete log with
1/2-soundness that must be repeated a number of times. This repetition remains “efficient
enough” because we only need to perform a linear number of sets of repeated proofs. We
then use these N double-encrypted zeros as the diagonal of our identity matrix, completing
it with trivial outer encryptions of zero.

In both cases, once we have an acceptable encrypted identity matrix, we shuffle and re-
encrypt its columns, and provide a zero-knowledge proof of knowledge of the permutation
and re-encryption factors. The proof technique for column shuffling is essentially a batch
proof [15] for shuffling N -tuples based on Neff’s single-value shuffle proof [124].

6.6.2 Proving a Shuffle of the Columns of a Ciphertext Matrix

Consider the simpler and extensively studied problem of proving that a list of ciphertexts
have been correctly re-encrypted and permuted, sometimes called a “proof of shuffle.” The
formal relation for this proof is as follows.

Definition 6-11 Denote by Rrp the relation consisting of pairs ((1κ, pk, c, c′), r) such that
c = (ci) ∈ CN

pk and c′ = REpk((cπ(i)), r) for some r ∈ RN
pk and π ∈ ΣN .

There are several known efficient methods [124, 70, 87, 180] for constructing a protocol for
this relation, all of which are reviewed in Chapter 3. Although these protocols differ slightly
in their properties, they all essentially provide HVZK proofs of knowledge. Thus, we assume

214

here, for clarity, that there exists an honest verifier zero-knowledge proof of knowledge πrp

for the above relation.
Such a protocol can then be extended to prove a shuffle of lists of ciphertexts, which is

exactly what each matrix column is. We use the batch proof technique of Bellare et al. [15]
for this purpose. Interestingly, this technique has not been applied to the mixnet setting to
date. Thus, we provide a detailed description and proof in this setting.

Intuitively, we want to reduce each list of ciphertexts—effectively each column of the
matrix—down to a single aggregate element. Then, we are left with N aggregate elements
for the inputs and N aggregate elements for the outputs. We can then use πrp to prove
knowledge of the shuffle permutation and randomization values for these aggregate elements.
Using a careful method for aggregation, we can show that a proof of shuffle on the aggregate
elements is equivalent to a proof of shuffle on the entire lists. More specifically, the extractor
for πrp can be used to extract the entire matrix of randomization values.

The specific method of aggregation is a dot product operation with a random vector
selected by the verifier. If the input and output matrices are set before this test vector is
selected and if the output matrix is not a column-shuffle of the input matrix, then the prob-
ability that the output dot-products will equal any permutation of the input dot products
is negligible. Neff [124] specifically addresses this issue (for different purposes) in his mixnet
shuffle. We now formalize the details of this protocol and its proofs.

Protocol 6-1 (Matrix Reencryption Permutation)
Common Input. public key pk and Ã, Ã′ ∈ CN×N

pk

Private Input. π ∈ ΣN and r ∈ RN×N
pk such that Ã′ =

(REpk(ãi,π(j); rij)
)
.

1. V chooses u = (ui) ∈ [0, 2κc − 1]N randomly and hands it to P.

2. They both compute c = (cj) =
(⊕N

i=1 ãui
ij

)
and c′ = (c′j) =

(⊕N
i=1(ã

′
ij)

ui

)
.

3. They run πrp on common input (pk, c, c′) and private input π, r′ =
(∑N

i=1 rijui

)
.

Proposition 6-3 Protocol 6-1 is a public-coin honest verifier zero-knowledge proof of knowl-
edge.

Proof. Completeness and the fact that the protocol is public-coin follow by inspection. We
now concentrate on the more interesting properties.

Zero-Knowledge. The simulator picks u randomly, as in the protocol, then computes c
and c′, again as defined in the protocol, and finally invokes the simulator of the subprotocol
πrp. It follows that the simulated view is indistinguishable from the real view of the verifier.

Soundness. The knowledge extractor below does not require that the common input be
valid, only that C, C ′ ∈ CN×N

pk . Thus, soundness follows from the existence of the knowledge
extractor if it has negligible knowledge error.

215

Knowledge Extraction. At a high level, the knowledge extractor runs and rewinds the
protocol a few times, each time with a different test vector u. For each test vector, the
subprotocol extractor is executed to extract π, s = (sj). Once N linearly independent ui

are obtained for the same permutation π, we can extract the entire matrix of randomization
values (rij) from the N vectors si, using fairly straight-forward linear algebra.

We now formalize this intuition. We denote η the order of the plaintext space. Specifi-
cally, in the case of BGN, η = n, while in the case of Paillier, η = n2, since we are looking at
the n3 outer layer encryption. We construct our extractor Eπmrp on fixed input (pk , Ã, Ã′):

1. for l = 1, . . . , N :

(a) Start the simulation of an execution between V and P . Denote by ul = (ul,j) the
random vector chosen by the simulator. Denote by (pk, cl, c

′
l) the common input

to the subprotocol πrp induced by ul.

(b) If there does not exists (bk,l) ∈ ZN×N such that, if δkj =
∑l

l′=1 bk,l′ul′,j, δkj ≡
1 mod η for k = j ≤ l and δkj ≡ 0 mod η for k �= j, k ≤ l, j ≤ l, then go to Step
1a. (This is the equivalent of checking for “linear independence,” when we don’t
have a vector space.)

(c) Run the knowledge extractor Eπrp on input (pk , cl, c
′
l) and obtain (πl, sl) with

sl = (sl,j)

2. Compute B = (bk,l) ∈ ZN×N such that δkj =
∑N

l=1 bk,lul,j ≡ Λid
N mod η. Compute

B′ = B − Λid over ZN×N . (Of course, B′ is congruent to the 0-matrix modulo η, but
we consider B′ over the integers for now.)

3. Consider S = (sl,j), the matrix composed of the extracted randomization value vectors
sl (arranged as rows of S.) The next step depends on the underlying cryptosystem
used.

In BGN Case. Compute R = (rkj) = B × S, and output (π, R).

In Paillier Case. Compute

R = (rkj) =

(
N∏

i=1

(ãi,π(j)/ã
′
ij)

b′ki/η

N∏
l=1

s
bk,l

l,j

)

where the division bki/η is taken over the integers, and output (π, R).

We first show correctness of our extractor. By construction, we have, for a given test
vector ul and column j of Ã:

N∏
i=1

(ã′
ij)

ul,i = c′l,j = cl,π(j)Epk(0, sl,j) = Epk(0, sl,j)
N∏

i=1

(
ãi,π(j)

)ul,i (6.1)

216

Now, we use B, the special values we computed, to effectively “cancel out” the test vectors
ul. We begin with the left side of Equation 6.1, applying the exponents (bk,l) to each element
of the vector cl and taking the product of all resulting elements, for all k ∈ [1, N]:

N∏
l=1

(
N∏

i=1

(ã′
ij)

uli

)bk,l

=
N∏

i=1

(
N∏

l=1

(ã′
ij)

bk,luli

)

=
N∏

i=1

(
(ã′

ij)
PN

i=1 bk,luli

)

=
N∏

i=1

(
(ã′

ij)
δki

)

= ã′
kj

N∏
i=1

(
(ã′

ij)
b′ki

)

Then, we perform the same operation to the right side of Equation 6.1:

N∏
l=1

(
Epk(0, sl,j)

N∏
i=1

(
ãi,π(j)

)ul,i

)bk,l

=

(
N∏

l=1

Epk(0, sl,j)
bk,l

)(
N∏

i=1

N∏
l=1

(ãi,π(j))
bk,lul,i

)

=

(
N∏

l=1

Epk(0, sl,j)
bk,l

)(
N∏

i=1

(ãi,π(j))
PN

l=1 bk,lul,i

)

=

(
N∏

l=1

Epk(0, sl,j)
bk,l

)(
N∏

i=1

(ãi,π(j))
δki

)

=

(
N∏

l=1

Epk(0, sl,j)
bk,l

)(
N∏

i=1

(ãi,π(j))
b′ki

)
ãk,π(j)

Thus, setting both halves equal to one another again, we get:

ã′
kj

N∏
i=1

(
(ã′

ij)
b′ki

)
=

(
N∏

l=1

Epk(0, sl,j)
bk,l

)(
N∏

i=1

(ãi,π(j))
b′ki

)
ãk,π(j)

ã′
kj =

(
N∏

l=1

Epk(0, sl,j)
bk,l

)(
N∏

i=1

(ãi,π(j)/ã
′
ij)

b′ki

)
ãk,π(j)

217

Thus, the randomization values extracted are:

rkj =

(
N∏

l=1

Epk(0, sl,j)
bk,l

)(
N∏

i=1

(ãi,π(j)/ã
′
ij)

b′ki

)

We conclude the argument differently depending on the cryptosystem used.

In BGN Case. Note that b′ki = 0 mod η for all k and i, and the order of any ciphertext
divides η. Thus, the second product equals 1 in the ciphertext group. Furthermore, the
randomizer space is Zη so we have

ã′
kj = Epk

(
0,

N∑
l=1

bk,lsl,j

)
ãk,π(j) .

In Paillier Case. Again b′ki = 0 mod η for all k and i, but the order of a ciphertext may
be larger than η. However, we know that b′ki is a multiple of η, which means that we can
make the following interpretation:

N∏
i=1

(ãi,π(j)/ã
′
ij)

b′ki = Epk

(
0,

N∏
i=1

(ãi,π(j)/ã
′
ij)

b′ki/η

)

Thus, the randomization values in this case are:

rkj =
N∏

i=1

(ãi,π(j)/ã
′
ij)

b′ki/η

N∏
l=1

s
bk,l

l,j

We remark that this randomization factor is an element in Z∗
n3 and not in Z∗

n as expected.
However, it remains a witness of re-encryption using one of the alternative Paillier encryption
algorithms.

�
The above proof makes three assumptions that we now explore in further detail, to ensure

that this extractor is precisely correct. First, we show that we can indeed find test vectors ul

for the condition we seek. Second we show that the behavioral distribution of this extractor
is correct as it simulates the protocol to the prover’s code—otherwise the prover may abort.
Finally, we analyze the efficiency of this extraction and verify that its success probability is
good enough.

Finding “Linearly Independent” Vectors. We need to be certain that finding N vec-
tors ul such that there exists matrix B as defined above is within reach. We show that this
is possible given the following lemma.

Lemma 6-1 Let η be a product of κ/2-bit primes, let N be polynomially bounded in κ, and
let u1, . . . , ul−1 ∈ ZN such that ujj = 1 mod η and uji = 0 mod η for 1 ≤ i, j ≤ l − 1 < N
and i �= j. Let ul ∈ [0, 2κc − 1]N be randomly chosen, where 2−κc is negligible. Then the

218

probability that there exists a1, . . . , al ∈ Z such that if we define u′
l =

∑l
j=1 ajuj mod η, then

u′
l,l = 1 mod η, and u′

l,i = 0 mod η for i < l is overwhelming in κ.

Proof.
Note that b = ul,l −

∑l−1
j=1 ul,juj,l is invertible with overwhelming probability, and, when

it is, we view its inverse b−1 mod η as an integer and define aj = −b−1ul,j mod η for j < l

and al = b−1. For i < l this gives ul,i =
∑l

j=1 ajuj,i = b−1(1 − aiuii) = 0 mod η and for i = l

this gives ul,l =
∑l

j=1 ajuj,l = b−1(ul,l −
∑l−1

j=1 ul,juj,l) = 1 mod η.
�

Remark 6-2 When the plaintexts are known, and this is the case when C is an encryption
of the identity matrix, slightly more efficient techniques can be used. This is sometimes called
a “shuffle of known plaintexts” (see [124, 87, 180]).

6.6.3 Proving Double Re-encryption

Recall that, in the Paillier case, we cannot simply create a trivial encryption of a permutation
matrix, because the inner encryption of 0 must be random and must remain secret from all
external observers. The solution is to create these double encryptions of 0 first, and then to
complete the identity matrix with trivial single-outer encryptions of 0.

Intuitively, we start with the trivial double encryption of 0, ã. The prover then shows
that he correctly reencrypted the inner and outer layers of ã to yield ã′. Note that this trivial
double encryption of 0 is none other than the Paillier generator:

Epai
n3 (Epai

n2 (0; 0); 0) = gh0
1 mod n2

h0
2 mod n3 = g.

The following relation captures the problem of proving correctness of a double-re-encryption,
and Figure 6-4 illustrates the proof protocol and creation of a list of N double-reencrypted
0s.

Definition 6-12 Denote by Rpai
dr the relation consisting of pairs ((1κ, n, ã, ã′), (r, s)), such

that ã′ = ãhr
1 mod n2

hs
2 mod n3 with r, s ∈ [0, N2κr].

The protocol here is a typical construction with soundness 50%, which must be iterated
(in parallel) κc times to make the error probability negligible.

Protocol 6-2 (Double Re-encryption)
Common Input. A modulus n and ã, ã′ ∈ Cn3

Private Input. r, s ∈ [0, n2κr] such that ã′ = ãhr
1 mod n2

hs
2 mod n3.

1. P chooses r′ ∈ [0, n22κr] and s′ ∈ [0, n322κr], computes α = ãhr′
1 mod n2

hs′
2 mod n3, and

hands α to V.

219

ã ã
′

α

b = 0 b = 1

g

g

g

.

.

.

E
pai

n
3

(
E

pai

n
2 (0; r1); s1

)

ã
′ = RE

pai

n
3

(
ã
E

pai

n2
(0;r)

; s

)

α = RE
pai

n3

(

ã
E
pai

n
2
(0;r

′
)
; s′

)

ã′

= RE
pai

n3

(

α
E
pai

n
2
(0;r′

−r)
; s′

− sE
pai

n2
(0; r′

− r)

)

E
pai

n
3

(
E

pai

n
2 (0; r2); s2

)

E
pai

n3

(

E
pai

n2 (0; rN); sN

)

.

.

.

Figure 6-4: Proof of Correct Double-Reencryption. In the n3 Generalized Paillier scheme,
we can perform double reencryption of ciphertexts ã. Because we are proving a double-
discrete logarithm, our only choice is to provide a triangulation proof with 50% soundness.
In the diagram above, the prover performs a second double-reencryption of ã into α, then,
depending on the verifier challenge bit b, reveals the reencryption exponents for α, or the
“difference” in reencryption exponents between α and ã′. The right-hand side of the figure
shows the double-reencryption of N instances of g, which is the trivial double-encryption
of 0. These double-reencryptions will serve as the diagonal in the identity matrix, whose
columns then get shuffled to generate an encrypted permutation matrix.

2. V chooses b ∈ {0, 1} randomly and hands b to P.

3. P defines (e, f) = (r′ − br, s′ − b(he
1 mod n2)s). Then it hands (e, f) to V.

4. V checks that α = ((ã′)bã1−b)he
1 mod n2

hf
2 mod n3.

Proposition 6-4 Protocol 6-2 is a public-coin honest verifier zero-knowledge proof of knowl-
edge for Rpai

dr .

Proof. Completeness and the public-coin property follow by inspection. The honest verifier
zero-knowledge simulator simply picks e, f ∈ [0, n2κr] and b ∈ {0, 1} randomly and defines
α = ((ã′)bã1−b)he

1hf
2 mod n3. The resulting view is statistically close to a real view, since

2−κr is negligible.
For soundness, note that if we have ãh

e1
1 hf1

2 = α = (ã′)h
e2
1 hf2

2 mod n3 with e1, f1, e2, f2 ∈ Z,
then we can divide by hf1

2 and take the he1
1 th root on both sides. This gives

ã = (ã′)h
e2−e1
1 h

(f2−f1)/h
e1
1

2 mod n3 ,

220

which implies that the basic protocol is special 1/2-sound. The protocol is then iterated
in parallel κc times which gives negligible error probability 2−κc . The proof of knowledge
property follows immediately from special soundness. �

6.7 Distributed Generation and

Obfuscation of a Shuffle

We now explain how to sample and obfuscate the BGN and Paillier shuffles in a distributed
way. We consider a number of parties, call them mix servers {Mj}, who want to jointly
generate an obfuscated shuffle with the typical mixnet properties:

• robustness: a cheating mix server is caught, even if there is only one honest verifier.

• privacy: if at least one mix server is honest, then privacy is ensured.

The techniques presented in this section are simply an extension of the proof methods used
when a single party wants to obfuscate a shuffle. First, we present an intuitive description
of how these proof methods can be adapted. Then, we formalize these protocols in the
Universally Composable (UC) framework of Canetti [32] and show that our protocols can
be used trivially to realize an ideal mixnet functionality in this model. Finally, we prove the
security of these constructions.

6.7.1 An Intuitive Overview of the Protocols

Recall that, in both the Paillier and BGN cases, a single prover can demonstrate correct
obfuscation by proving, in zero-knowledge, knowledge of the permutation and randomiza-
tion values that map the columns of an encrypted identity matrix to those of the claimed
encrypted permutation matrix λ̃π. In the BGN case, the starting matrix can be the trivial
encryption of the identity matrix, Epk(Λ

id). In the Paillier case, the starter identity matrix
must be proven correct using proofs of correct double-encryption of 0’s, because the inner
encryptions of 0’s on the diagonal must remain secret.

Shuffling the Columns Again. The proof of correct column shuffle for the matrix can
be iterated. Starting with an encrypted identity matrix, each mix server Mj shuffles, in
turn, the columns of the matrix produced by the previous mix server Mj−1. The first mix
server uses the identity matrix previously described. Figure 6-5 illustrates this process.

Reencrypting the Double-Encrypted 0’s Again. In the Paillier case, the mix servers
must also collaborate to jointly produce a list of N double-encrypted 0s, such that the
resulting inner-layer encryptions of 0 are hidden from the mix servers themselves, as long
as one is honest. Again, the process described for the single prover can simply be iterated.
Each mix server Mj takes the output ciphertexts from the previous mix server Mj−1, then

221

⎡
⎢⎣

λ̃id
1,1

. . . λ̃id
1,N

.

.

.
. . .

.

.

.

λ̃id
N,1

. . . λ̃id
N,N

⎤
⎥⎦

⎡

⎢
⎢
⎣

λ̃
(2)

1,1
. . . λ̃

(2)

1,N

.

.

.
. . .

.

.

.

λ̃
(2)

N,1
. . . λ̃

(2)

N,N

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

λ̃
(1)

1,1
. . . λ̃

(1)

1,N

.

.

.
. . .

.

.

.

λ̃
(1)

N,1
. . . λ̃

(1)

N,N

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

λ̃
(l)

1,1
. . . λ̃

(l)

1,N

.

.

.
. . .

.

.

.

λ̃
(l)

N,1
. . . λ̃

(l)

N,N

⎤

⎥
⎥
⎦

.

.

.

Column Shuffle
by Official #1

Column Shuffle
by Official #2

Figure 6-5: Multiple officials shuffling the columns of the encrypted permutation matrix.
The encrypted matrix effectively captures all of the shuffle actions and is then ready to
“reapply” them by homomorphic matrix multiplication.

222

reencrypts the inner and outer layers of the N ciphertexts, then proves knowledge of both
inner and outer randomization values in the same way as the single-prover method. The first
mix server starts with the trivial double-encryption of 0. No shuffling is required here, only
chained double-reencryptions. See Figure 6-6.

6.7.2 UC Modeling

The UC model is reviewed in Chapter 2.

Why the UC Model. Our protocols are meant to be used in a mixnet setting, where
decryption eventually occurs and plaintexts are produced. If we provide only game-based
modeling to prove the indistinguishability of our obfuscation techniques, we still have to prove
that this security “composes” nicely with the decryption step that is inevitable in any real
setting. We could, of course, prepare new game-based definitions that take this into account.
However, this would require that we consider the exact details of the provable decryption
step and the various ways in which shuffling and decryption can interact to achieve all of the
security properties expected of a mixnet.

The purpose of the Universally Composable framework of Canetti [32] is to simplify and
strengthen these kinds of proofs. A protocol proven secure in the UC framework can be safely
composed with another protocol proven secure in the UC framework. In particular, given
the existing UC mixnet definition of Wikström [179] and the definition of other common
protocols in the UC framework, we can focus the modeling and description to our specific
contributions, providing only ideal specifications of the other functionalities we expect to
compose with our constructions.

Modeling as a Subprotocol. In the UC model, the only natural use of our construction is
as a subprotocol used to realize a mixnet: the pure shuffle function is not particularly useful
as a reusable component. Thus, we show how to use our protocols to trivially realize an ideal
mixnet functionality FMN. We study the properties of our protocol in a UC hybrid model,
containing an ideal authenticated bulletin board FBB, an ideal coin-flipping functionality

FCF, an ideal zero-knowledge proof of knowledge of a plaintext FRkp

ZK , and an ideal key
generator FKG with threshold decryption support.

UC Specifications. Note that our protocol varies slightly depending on the cryptosystem
used: the BGN construction is a decryption shuffle, while the Paillier construction is a re-
encryption shuffle. We only indicate which cryptosystem is used when necessary and keep
our notation generic otherwise, e.g. we write CS instead of CSbgn or CSpai. To simplify the
exposition, we also say that a public-coin protocol is used “in a distributed way” when the
challenge is taken from the ideal coin-flipping functionality.

Protocol 6-3 (Generation of Paillier Double-Encrypted Zeros)
Common Input. A public key n and integer N .
Mix-server Mj proceeds as follows. There are k mix servers.

223

ã
′ = RRE(ã; r′; s′) = RE

pai

n
3

(
ã
E

pai

n
2
(0;r

′
); s′

)

.

.

.

.

.

.

d1,1 = E
pai

n3

(

E
pai

n2 (0; r1); s1

)

d1,2 = E
pai

n3

(

E
pai

n2 (0; r2); s2

)

d1,N = E
pai

n3

(

E
pai

n2 (0; rN); sN
)

d0,1 = g

d0,2 = g

d0,N = g

d0,1

d0,2

d0,N

RRE

.

.

.

RRE

RRE

.

.

.

d1,1

d1,2

d1,N d2,N

d2,2

d2,1

.

.

.

RRE

RRE

RRE

.

.

.

.

.

.

. . .

. . .

. . .

dl,1

dl,2

dl,N

.

.

.

dl,1

dl,2

dl,N

.

.

.

dl,1

dl,2

dl,N

E(0) E(0). . .

. . . E(0)

. . .

.

.

.

.

.

.

.

.

.

.
.
.

E(0)

E(0) E(0)

Figure 6-6: Multiple officials sequentially perform double reencryption on a list of values.
Double Reencryption is represented in the top equation. The starting list of values is com-
posed of trivial encryptions of 0, which is the generator g. Triangulation proofs like the ones
in Figure 6-4 are performed for every such double reencryption. The final list of values is
then used as the diagonal to form an encrypted identity matrix.

224

1. Define d0 = (Epai
n3 (Epai

n2 (0, 0∗)), . . . , Epai
n3 (Epai

n2 (0, 0∗))) of length N . This is the starting
vector of N trivial encryptions of 0.

2. For l = 1, . . . , k do:

(a) If l �= j, then it is not this current mix server’s turn. Wait until the mix server
whose turn it is, Ml has posted his output: (Ml, DoubleReencrypt,dl), dl ∈ Cn3,
appears on FBB. Execute the verifier of Protocol 6-2 in a distributed way. If it
fails, then set dl = dl−1, effectively removing mixserver Ml from the running.

(b) If l = j, then it is this mix server’s turn:

i. Choose rj, sj ∈ [0, n2κr]N randomly, compute dj = (d
h

rj,i
1 mod n2

j−1,i h
sj,i

2 mod n3),
and publish (DoubleReencrypt,dj) on FBB.

ii. Prove using Protocol 6-2 in a distributed way knowledge of rj, sj ∈ [0, n2κr]N

such that (n,dj−1,dj) ∈ Rpai
dr .

3. Output dk.

Protocol 6-4 (Generation and Obfuscation of a Shuffle)
Common Input. A public key pk and integer N .
Mix-server Mj proceeds as follows. There are k mix servers.

1. In BGN Case. Define Λ̃0 = Epk(Λ
id, 0∗).

In Paillier Case. Execute Protocol 6-3 and obtain its output d. Then form a matrix
Λ̃0 = (λ̃0

ij), with λ̃0
ii = di, and λ̃0

ij = Epai
n3 (0, 0∗) for i �= j.

2. For l = 1, . . . , k do:

(a) If l �= j, then wait until (Ml, ColumnShuffle, Λ̃
l), Λ̃l = (λ̃l

i,j) ∈ CN×N
pk , appears

on FBB. Execute the verifier of Protocol 6-1 in a distributed way. If it fails, then
set Λ̃l = Λ̃l−1.

(b) If l = j, then do:

i. Choose rj ∈ RN×N
pk randomly, choose πj ∈ ΣN randomly,

compute Λ̃j = REpk

(
(λ̃j−1

i,πj(t)
); rj

)
, and publish (ColumnShuffle, Λ̃j) on FBB.

ii. Prove, using Protocol 6-1 in a distributed way, knowledge of rj ∈ RN×N
pk such

that
(
(pk, Λ̃j−1, Λ̃j), rj

)
∈ Rmrp.

3. Output Λ̃k.

225

6.8 Trivial Mix-Net From Obfuscated Shuffle

We now give the promised trivial realization of an ideal mixnet. The ideal mixnet function-
ality FMN we consider is essentially the same as that used by Wikström [179, 180, 181]. It
simply accepts inputs and waits until a majority of the mix-servers requests that the mixing
process starts. Finally, it sorts the inputs and outputs the result. Recall that this is the
ideal functionality definition, which we must prove is realized by our protocols of the previous
section, using the hybrid model previously described.

Recall that CI is the UC designation of the communication medium, across which all
messages pass. Recall also that all messages sent to CI must first designate a recipient.
Conversely, messages received from CI are tagged with their authenticated sender. Finally,
recall that, in the ideal model of UC functionalities, the ideal adversary S has the power
to delay all messages sent to the functionality. S is effectively the gatekeeper to the ideal
functionality, although it does not see the inputs of honest senders, of course.

6.8.1 Ideal Mixnet Functionality

Functionality 2 (Mix-Net) The ideal functionality for a mixnet, FMN, running with mix-
servers M1, . . . ,Mk, senders P1, . . . ,PN , and ideal adversary S proceeds as follows

1. Initialize the following storage:

• list L = ∅, the list of messages received from senders,

• set JS = ∅, the set of senders who have sent a message, and

• set JM = ∅, the set of mix servers who have asked the mix to run.

2. Repeatedly wait for messages from CI:
• Upon receipt of (Pi, Send, mi) with mi ∈ {0, 1}κ and i �∈ JS:

– set L ← L ∪ {mi}
– set JS ← JS ∪ {i}

• Upon receipt of (Mj, Run):

– JM ← JM ∪ {j}
– If |JM | > k/2, then sort the list L lexicographically to form a list L′, and

send:

∗ {(Ml, Output, L
′)}k

l=1

and ignore further messages.

If |JM | ≤ k/2, send (S,Mj, Run), and keep waiting for messages.

226

6.8.2 Other Ideal Functionalities for the Hybrid Construction

The functionalities of the hybrid world are fairly natural. The bulletin board FBB is authen-
ticated; everybody can write to it, and nobody can delete anything. It also stores the order
in which messages appear. The coin-flipping functionality FCF waits for a coin-request and
then simply outputs the requested number of random coins. The zero-knowledge proof of

knowledge of a plaintext FRkp

ZK allows a sender to submit a public key pk, a ciphertext c, a
message m, and a random string r ∈ {0, 1}∗, and simply tells the mix-servers if c = Epk(m, r)
or not. The key generation functionality generates a key pair (pk, sk) = G(1κ) and outputs
the public key pk. Then if it receives more than k/2 requests to decrypt a certain list of
ciphertexts, it decrypts it using sk and outputs the result. We now review formal definitions
of these functionalities.

Recall that, at any point, the ideal adversary may delay messages to the ideal function-
ality. We consider that this delay capability is built into the communication network CI , as
described in Chapter 2. However, there are certain behaviors of the following functionalities
which are not generic according to the properties of CI . When these occur, we describe them
in greater detail.

Functionality 3 (Bulletin Board) The ideal bulletin board functionality, FBB, running
with parties P1, . . . ,Pn and ideal adversary S proceeds as follows. Intuitively, the ideal
adversary is, as always, able to delay any message. In addition, in the case of the bulletin
board, the ideal adversary can choose to delay certain messages based on their content, since
the adversary sees bulletin board content. To model this accordingly, the ideal functionality
has two databases of received messages: the first, D1 contains messages received but not
yet approved by the ideal adversary, and the second, D2, contains messages received and
approved.

1. Initialize the following storage:

• two databases D1, D2 indexed on integers, which will be used to store messages
posted to the bulletin board.

• two counters c1 and c2 that respectively index into D1 and D2.

2. Repeatedly wait for a message:

• Upon receiving (Pi, Write, mi), mi ∈ {0, 1}∗:
– store D2[c2] = (Pi, mi),

– set c2 ← c2 + 1, and

– send (S, Input, c2,Pi, mi).

• Upon receiving (S, AcceptInput, c) check if a tuple (Pi, mi) is stored in D2[c]. If
so, then:

– store D1[c1] = (Pi, mi),

227

– set c1 ← c1 + 1, and

– send (S, AcceptInput, c).

• Upon receiving (Pj, Read, c), check if a tuple (Pi, mi) is stored in D1[c].

If so, send
((S,Pj, Read, c,Pi, m), (Pj, Read, c,Pi, mi)).

If not, send
((S,Pj, NoRead, c), (Pj, NoRead, c)).

Functionality 4 (Coin-Flipping) The ideal Coin-Flipping functionality, FCF, with mix-
servers M1, . . . ,Mk, and adversary S proceeds as follows:

1. Initialize Jκ = ∅ for all κ.

2. On receipt of (Mj, GenerateCoins, κ), set Jκ ← Jκ ∪ {j}.
If |Jκ| = k, then set Jκ ← ∅, choose c ∈ {0, 1}κ randomly, and send
((S, Coins, c), {(Mj, Coins, c)}k

j=1).

Functionality 5 (Key Generator) The ideal key generator FKG, running with mix-servers
M1, . . . ,Mk, senders P1, . . . ,PN , and ideal adversary S proceeds as follows:

1. Initialize a set JD = ∅. Compute (pk, sk) = G(1κ).

2. send ((S, PublicKey, pk), {(Mj, PublicKey, pk)}k
j=1, {(Pi, PublicKey, pk)}N

i=1).

3. Repeatedly wait for messages.

Upon reception of (Mj, Decrypt, c), set JD ← JD ∪ {(Mj, c)}.
If |{j : (Mj, c) ∈ JD}| > k/2, then send
((S, PublicKey, pk), {(Mj, PublicKey, pk)}k

j=1).

Functionality 6 (Zero-Knowledge Proof of Knowledge) Let L be a language given by
a binary relation R. The ideal zero-knowledge proof of knowledge functionality FR

ZK of a
witness w to an element x ∈ L, running with provers P1, . . . ,PN , and verifiers M1, . . . ,Mk,
proceeds as follows.

1. Initialize a database D.

2. Repeatedly wait for messages:

• Upon receipt of (Pi, Prover, x, w),
store D[(Pi, x)] = w, and send (S,Pi, Prover, x, R(x, w)).

Ignore further messages from Pi.

228

• Upon receipt of (Mj, Question,Pi, x):

(a) if JPi,x is not initialized, set JPi,x = ∅,
(b) set JPi,x ← JPi,x ∪ {j}.
(c) Let w be D[(Pi, x)], or the empty string if nothing is stored.

If |JPi,x| = k, send
((S,Mj, Verifier,Pi, x, R(x, w)), {(Mj, Verifier,Pi, x, R(x, w))}k

j=1).

If|JPi,x| < k, send
(S,Mj, Question,Pi, x).

We care about this zero-knowledge proof of knowledge functionality for the purpose
of proving knowledge of a plaintext and randomization factor that correspond to a public
ciphertext. Specifically, the relation for which we prove knowledge is defined below.

Definition 6-13 Let CS be a cryptosystem. Then denote by Rkp the relation consisting of
pairs ((pk, c), (m, r)) such that c = Epk(m, r) and m ∈ {0, 1}κm.

6.8.3 Realization of Mixnet Functionality

We now consider the hybrid model with the ideal functionalities just defined, and we use
our concrete protocols to realize a mixnet. Note that, given the features of our protocol, this
realization is now quite trivial. The complexity is in the proof of security.

Protocol 6-5 (Trivial Mix-Net)
Sender Pi proceeds as follows.

1. Wait for (PublicKey, pk) from FKG.

2. Wait for an input m ∈ {0, 1}κm, choose r ∈ {0, 1}∗ randomly, and compute c =

Epk(m, r). Then publish (Send, c) on FBB and hand (Prover, (pk, c), (m, r)) to FRkp

ZK .

Mix-server Mj proceeds as follows.
Offline Phase

1. Wait for (PublicKey, pk) from FKG.

2. Execute Protocol 6-4 (with either BGN or Paillier as appropriate) and denote the output
obfuscated (decryption/re-encryption) shuffle by Λ̃π.

Online Phase

1. Initialize

229

• JM = ∅, to keep track of the set of mix servers who have sent the Run message.

• JS = ∅, to keep track of the senders who have sent an input.

2. repeatedly wait for new inputs or the next new message on FBB.

• On input (Run), send (Write, Run) to FBB.

• If (Mj, Run) appears on FBB, then set JM ← JM ∪{j}. If |JM | > k/2, go to Step
3.

• If (Pγ, Send, cγ) appears on FBB for γ �∈ JS then do:

(a) Set JS ← JS ∪ {γ}.
(b) Send (Question,Pγ, (pk, cγ)) to FRkp

ZK and wait for a reply

(Verifier,Pγ, (pk, cγ), bγ) from FRkp

ZK .

3. Let J ′
S ⊂ JS be the set of γ such that bγ = 1. Form a list of trivial encryptions cpad =

(Epk(0, 0
∗), . . . , Epk(0, 0

∗)) of length N −|J ′
S|. Then form the list c = (cγ)γ∈JS

‖cpad, and

compute c′ = c � Λ̃π.

4. In BGN Case. Hand (Decrypt, c′) to FKG and wait until it returns (Decrypted,m).
Form a new list m′ by sorting m lexicographically and removing N − |J ′

S| copies of 0.
Then output (Output,m′).

In Paillier Case. Hand (Decrypt, c′) to FKG and wait until it returns (Decrypted, c′′).
Hand (Decrypt, c′′) to FKG and wait until it returns (Decrypted,m). Form a new list
mess′ by sorting mess lexicographically and removing N − |J ′

S| copies of 0. Then
output (Output,m′).

Remark 6-3 The decryption step at the end of the protocol can be implemented efficiently
in a distributed and verifiable way using known methods (e.g. [48, 181]).

Proposition 6-5 Protocol 6-5 securely realizes FMN in the (FBB,FCF,FRkp

ZK ,FKG)-hybrid
model with respect to static adversaries corrupting any minority of the mix-servers and any
set of senders under the polynomial indistinguishability of the BGN or Paillier cryptosystem
respectively.

Proof. The proof for this UC construction is given in Section 6.10. �

230

Construction Sample & Obfuscate Prove Precompute Evaluate

BGN with N = 350 14 (0.5h) 3 (0.1h) NA 588 (19.6h)
Paillier with N = 2000 556 (18.5h) 290 (9.7h) 3800 (127h) 533 (17.8h)

Figure 6-7: The table gives the complexity of the operations in terms of 104 modular κ-
bit exponentiations and in parenthesis the estimated running time in hours assuming that
κ = 1024, κc = κr = 50, and that one exponentiation takes 12 msec to compute (a 1024-bit
exponentiation using GMP [85] takes 12 msec on our 3 GHz PC). We use maximal values of
N for each scheme that yield practical times in a real election setting.

6.9 Complexity Estimates

Our constructions clearly require O(N2) exponentiations, but we give estimates that show
that the constant hidden in the big-O notation is reasonably small in some practical set-
tings. For simplicity we assume that the cost of squaring a group element equals the cost of
multiplying two group elements and that computing an exponentiation using a κe-bit inte-
ger modulo a κ-bit integer corresponds to κe/κ full exponentiations modulo a κ-bit integer.
We optimize using fixed-base exponentiation and simultaneous exponentiation (see [114]).
We assume that evaluating the bilinear map corresponds to computing 6 exponentiations in
the group G1 and we assume that such one such exponentiation corresponds to 8 modular
exponentiations. This seems reasonable, although we are not aware of any experimental ev-
idence. In the Paillier case we assume that multiplication modulo ns is s2 times as costly as
multiplication modulo n. We assume that the proof of a shuffle requires 8N exponentiations
(this is conservative).

Most exponentiations when sampling and obfuscating a shuffle are fixed-base exponen-
tiations. The only exception is a single exponentiation each time an element is double-re-
encrypted, but there are only N such elements. In the proof of correct obfuscation the
bit-size κc of the elements in the random vector u used in Protocol 6-1 is much smaller than
the security parameter, and simultaneous exponentiation is applicable. In the Paillier case,
simultaneous exponentiation is applicable during evaluation, and pre-computation lowers the
on-line complexity. Unfortunately, this is not work in the BGN case due to the bilinear map.
For practical parameters we get the estimates in Fig. 6-7. To compute these estimates, we
prepared a short Scheme program, presented at the end of this section.

The BGN construction is only practical when N is small and the maximal number of
bits in any submitted ciphertext is small. The Paillier construction on the other hand is
practical for normal sized voting precincts in the USA: full length messages can be accom-
modated, and given one week of precomputing, evaluating the obfuscated shuffle can be done
overnight. We note that all constructions are easily parallelized, i.e., larger values of N can
be accommodated or the running time can be reduced directly by using more computers.

;; Program to estimate the complexity of sampling, obfuscating,

;; proving correctness of an obfuscation, and evaluating.

;; isbgn: If equal to 1 we compute BGN complexity and otherwise Paillier

231

;; secp: Main security parameter, number of bits in Paillier modulus.

;; secpr: Bit-size of random padding in Schnorr proofs without mod-reduction.

;; secpc: Bit-size of challenge elements.

;; logb: Number of bits in each "chunk" in fixed-base exponentiation.

;; wsmall: Width of simultaneous exponentiation when we have small exponents.

;; wbig: Width of simultaneous exponentiation when we have big exponents.

;; oneexp: The time is takes to compute one modular secp-bit exponentiation.

;; N: Number of senders

(define (performance isbgn secp secpr secpc logb wsmall wbig oneexp N)

;; Displays time in minutes and hours to compute one exponentation

;; modulo a secp-bit integer

(define (display-as-time noexp)

(display (/ (truncate (round (/ (* oneexp noexp) 36))) 100)))

;; The cost in terms of multiplications to evaluate the bilinear map.

(define (bmap-cost) (* 6 (* 1.5 secp)))

;; The cost in terms of modular exponentiations to evaluate the bilinear map.

(define (ECC-cost) 8)

;; The cost of performing a fixed-base exponentation given precomputation.

;; The parameter is the number of bits in the exponent.

(define (logb-fixedbase expsize)

(let ((b (expt 2 logb)))

(- (+ (* (/ (- b 1) (* b logb)) expsize) b) 3)))

;; Precomputation needed for wbig

(define (w-simultaneous-wbig-precomp)

(expt 2 wbig))

;; The cost of wsmall-wise simultaneous exponentiation.

;; The parameter is the number of bits in the exponent.

(define (w-simultaneous-small expsize)

(/ (- (+ (* 2 expsize) (expt 2 wsmall)) 4)

wsmall))

;; The cost of wsmall-wise simultaneous exponentiation.

;; The parameter is the number of bits in the exponent.

(define (w-simultaneous-big-withoutprecomp expsize)

(/ (- (* 2 expsize) 4)

wbig))

;; The cost of a proof of a shuffle of lists.

;; This value is rather arbitrarily chosen.

(define (proof-of-shuffle) (* 8 N secp))

;; The cost of the proof of a shuffle of the rows in a matrix.

(define (matrix-reencryption-proof)

(if (> isbgn 0)

(+ (* N N (w-simultaneous-small secpc))

(proof-of-shuffle))

(+ (* 9 N N (w-simultaneous-small secpc))

(* 9 (proof-of-shuffle)))))

;; The cost of a single proof of double re-encryption.

(define (double-reencryption)

(* secpc (+ (* 9 (logb-fixedbase (+ (* 3 secp) (* 2 secpr))))

(* 4 (logb-fixedbase (+ secp (* 2 secpr))))

(* 2 secp 1.5 9))))

;; Translate the number of input multiplications to the

;; corresponding cost in terms of exponentiations

(define (mults-to-exps mults)

(round (/ mults (* 1.5 secp))))

;; The cost of sampling and obfuscating a shuffle.

;; In other words the cost of computing a random encrypted

;; "permutation matrix".

(define (sample-obfuscate-exps)

(mults-to-exps

(if (> isbgn 0)

(* N N (logb-fixedbase secp) (ECC-cost))

(* (+ (* 9 N N) (* 4 N))

(logb-fixedbase (+ secp secpr))))))

;; The cost of proving the correctness of a matrix.

(define (prove-exps)

(mults-to-exps

(if (> isbgn 0)

(* (matrix-reencryption-proof) (ECC-cost))

(+ (matrix-reencryption-proof)

(* N (double-reencryption))))))

;; Cost of precomputation for wbig-simultaneous exponentiation

(define (precompute-paillier-exps)

232

(mults-to-exps (/ (* N N (w-simultaneous-wbig-precomp)) wbig)))

;; The cost of performing homomorphic matrix multiplication.

(define (eval-exps)

(mults-to-exps

(if (> isbgn 0)

(* N N (+ (bmap-cost) 1) (ECC-cost))

(* 9 N N (w-simultaneous-big-withoutprecomp (* 2 secp))))))

(define (display-result)

(newline)

(if (> isbgn 0)

(display "BGN: ")

(display "PAI: "))

(display "secp=")

(display secp)

(display ", secpr=")

(display secpr)

(display ", secpc=")

(display secpc)

(display ", logb=")

(display logb)

(display ", wsmall=")

(display wsmall)

(display ", wbig=")

(display wbig)

(display ", bgood=")

(display (round (logb-fixedbase (* 2 secp))))

(display ", N=")

(display N)

(newline)

(display "Sample and Obfuscate ")

(display (sample-obfuscate-exps))

(display " ")

(display-as-time (sample-obfuscate-exps))

(newline)

(display "Prove ")

(display (prove-exps))

(display " ")

(display-as-time (prove-exps))

(newline)

(cond ((= isbgn 0)

(display "Precomp. Eval ")

(display (precompute-paillier-exps))

(display " ")

(display-as-time (precompute-paillier-exps))

(newline)))

(display "Evaluate ")

(display (eval-exps))

(display " ")

(display-as-time (eval-exps)))

(display-result)

’()

)

;; Compute for both BGN and Paillier

(performance 1 1024 50 50 6 5 18 0.012 350)

(performance 0 1024 50 50 6 5 18 0.012 2000)

6.10 UC Proof of Mixnet

The proof proceeds as do most proofs of security in the UC-framework. First, we define an
ideal adversary S that runs the real adversary A as a black-box. Then, we show that if the
environment can distinguish, with non-negligible probability, the ideal model run with the
ideal adversary from the real model run with the real adversary, then we can break one of
the security properties assumed of the underlying cryptosystem.

The Ideal Adversary. The ideal adversary simulates the view of the real model to the
real adversary. Denote by IM and IP the indices of the corrupted mix-servers and senders

233

correspondingly. The ideal adversary corrupts the corresponding dummy parties. Then it
simulates the real model as follows.

Links Between Corrupted Parties and the Environment. The ideal adversary sim-
ulates the simulated environment Z ′ such that it appears as if A is communicating directly
with Z. Similarly, it simulates the corrupted dummy party M̃j (or P̃i) for j ∈ IM (or
i ∈ IP) such that it appears as if Mj (or Pi) is directly communicating with Z. This is done
by simply forwarding messages.

Simulation of Honest Senders. The ideal adversary clearly does not know the messages
submitted by honest senders {Pi}i�∈IP to FMN in the ideal model. Thus, it must use some
placeholders in its simulation and then make sure that this is not noticed. It simply uses
placeholder messages with value 0. S effectively simulates honest senders Pi as if they had
input 0, performing every other action honestly, including posting to FBB.

More precisely, when S receives (S,Pi, Input, f) – indication that the ideal Pi has sent a
message—it simulates Pi on input 0. S honestly performs encryption of this message 0 and
posts it to its own simulation of FBB, which generates message (Input, f ′,Pi, ci). S intercepts
this index f ′ and stores the index correspondence (f, f ′), and continues the simulation.

FBB otherwise passes the AcceptInput messages correctly from the simulated real world
to the ideal world and back, pausing simulation until the ideal functionality lets it continue.

Extraction From Corrupt Senders. When a corrupt sender submits a message in the
simulated real model, then the ideal adversary must instruct the corresponding corrupted
dummy sender to submit the same message.

When some Mj with j �∈ IM receives (Mj, Verifier,Pγ, (pk, cγ), 1) from FRkp

ZK in the
simulation of Step 2b, the simulation is interrupted and the message mγ encrypted in cγ

is extracted from the simulation of FRkp

ZK . Then P̃γ is instructed to submit mγ to FMN.
When S receives (P̃γ, Input, f) it hands (AcceptInput, f) to FMN and waits until it receives
(P̃i, Send) from FMN. Then the simulation of Mj is continued.

Simulation of Honest Mix-Servers. When an honest mix-server signals that it wishes
to start the mixing process, the corresponding simulated mix-server must do the same.

When S receives (M̃j, Input, f) from FMN, with j �∈ IM , it gives the simulated mix-server
Mj the input Run. When FBB is about to output (A, Input, f ′,Mj, Run) the simulation
is interrupted and (f, f ′) stored before the simulation is continued. When FBB receives
(A, AcceptInput, f ′) the simulation of FBB is interrupted and S hands (AcceptInput, f) to
FMN. When it returns the simulation is continued. Note that it normally returns (M̃j, Run)

or (M̃j, Output, L
′), but the empty message can be returned if the accept instruction is

ignored.

234

Extraction From Corrupt Mix-Servers. When a corrupted mix-server signals that it
wishes to start the mixing process in the simulated real model, the corresponding corrupted
dummy mix-server must do the same.

When FBB is about to hand (A, AcceptInput, f ′) to CI and (Mj, Run) has been stored in
the database D1 of FBB, the simulation is interrupted. Then S instructs M̃j to hand Run to

FMN and waits until it receives (M̃j, Input, f) from FMN. Then it hands (AcceptInput, f)
to FMN. When it returns the simulation of FBB is continued.

Simulation of Decryption. Note that when the decryption step is simulated by FKG, S
already knows the output L′ of FMN. Simulation proceeds slightly differently in the BGN
and Paillier cases, but in both cases a list (m′

1, . . . , m
′
N) is formed by padding L′ with zeros

until it has size N .

BGN Case. Choose πsim ∈ ΣN randomly and use (m′
πsim(1), . . . , m

′
πsim(N)) in the simulation

of FKG.

Paillier Case. In this case the key generator is called twice to decrypt the outer and inner
layer of the ciphertexts respectively. Choose πsim ∈ ΣN and r̄i ∈ Z∗

n randomly and compute
c′′ = (c′′1, . . . , c

′′
N) = (Epai

n,2(m
′
πsim(1), r̄1), . . . , Epai

n,2(m
′
πsim(N), r̄N)). In the first call use c′′ in the

simulation of FKG and in the second call use (m′
πsim(1), . . . , m

′
πsim(N)).

Reaching a Contradiction. Consider any real adversary A and environment Z. We
show that if Z can distinguish the ideal model run with S from the real model run with A,
then we can break the indistinguishability of the underlying cryptosystem.

Denote by Tideal a simulation of the ideal model run with S and Z and denote by Treal a
simulation of the real model run with Adv and Z. Denote by Tl the simulation of T0 except

for the following modifications of simulation honest senders Pi for i �∈ IP and i < l and FRkp

ZK .

1. Pi submits (Prover, (pk, c),⊥) to FRkp

ZK , i.e., it does not submit any witness. Instead,

the simulation of FRkp

ZK is modified to behave as if it received a witness from these
senders.

2. Instead of giving Pi the zero input, S peeks into the ideal functionality FRkp

ZK and uses
the message mi submitted by the corresponding honest dummy sender P̃i.

Claim 1 |Pr[T0 = 1] − Pr[TN = 1]| is negligible.

Proof. This follows by a standard hybrid argument. We need only observe that the secret
key of the cryptosystem is not used by S in its simulation. More precisely, define Advl to
be the polynomial indistinguishability adversary for the cryptosystem that takes a public
key pk as input and simulates Tl, except that if l �∈ IP it interrupts the simulation when
Pl is about to compute it submission ciphertext. Then it hands (M0, M1) = (ml, 0) to
the experiment, where ml is the message that P̃l handed to FMN. It is given a challenge

235

ciphertext cl = Epk(Mb) for a randomly chosen b ∈ {0, 1} which it uses in the continued
simulation.

By inspection we see that Pr[Expind−b
CS,Advl

(κ) = 1] = Pr[Tl−b = 1]. The polynomial indistin-
guishability of the cryptosystem then implies that |Pr[Tl = 1] − Pr[Tl+1 = 1]| is negligible
for l = 1, . . . , N . The triangle inequality and the fact that N is polynomially bounded then
implies that |Pr[T0 = 1] − Pr[TN = 1]| is negligible as claimed. �

Informally speaking we have now plugged back the correct messages in the simulation.
The problem is that decryption is still simulated incorrectly. In other words TN is still not
identically distributed Treal. To prove that the distributions are indistinguishable we need to
sample the latter distribution without using the secret key of the cryptosystem. We do this
using the knowledge extractors of the proofs of knowledge of correct obfuscation. One of the
honest mix-servers must also simulate its proof of correct re-encryption and permutation of
a matrix of ciphertexts.

Denote by Bb the simulation of TN or Treal (depending on if b = 0 or not) except that
in the simulation, if a corrupt mix-server Mj with j ∈ IM succeeds in Protocol 6-1 or
Protocol 6-2 then the knowledge extractor of the protocol is invoked to extract the witness.
In the Paillier case we assume that in the same way the knowledge extractors of corrupt
mix-servers are invoked in Protocol 6-3. Denote the maximal knowledge error of Protocol
6-1 and Protocol 6-2 by ε = ε(κ), and recall that the knowledge error of a proof of knowledge
does not depend on the adversary, but is a parameter of the protocol itself. Denote then
by t(κ)/(δ − ε), where t(κ) is some polynomial, the expected running time of the extractor
in any of these protocols for a prover with success probability δ, and recall that also t(κ) is
a parameter of the protocol. In the simulation carried out by Bb the running time of any
extractor is restricted to t(κ)/ε and if extraction fails it outputs 0.

Claim 2 |Pr[B0 = 1] − Pr[TN = 1]| and |Pr[B1 = 1] − Pr[Treal = 1]| is negligible.

Proof. First note that due to the soundness of the protocols, the probability that a mix-
server succeeds to prove a false statement is negligible. Thus, we assume without loss that
all statements for which the extractors are invoked there exists a witness.

Then consider the event El that in the lth proof computed by any mix-server Mj it
succeeds with probability less than 2ε conditioned on the simulation up to this point, and
still succeeds in the actual simulation. We clearly have Pr[El] < 2ε. The union bound then
implies the claim, since there are at most 2k invocations of the protocols in total. �

Claim 3 Bb runs in expected polynomial time.

Proof. This follows, since at any instance where an extractor is invoked for a prover on
some statement, if the prover succeeds with probability δ > 2ε, then the extractor runs in
expected time at most 2t(κ)/δ (although it may not output a witness at all), and otherwise
the running time is bounded by t(κ)/ε. Thus, in total this part of the simulation runs
in expected time 2t(κ). As the extractors are only invoked polynomially many times, the
complete simulation runs in expected polynomial time. �

236

Observe that B1 can be sampled even without the secret key, since all the random per-
mutations and all random exponents are extracted. More precisely, since the list of original
inputs and how they are permuted (and inner-layer re-encrypted in the Paillier case), is
known by the simulator it can simulate decryption perfectly. Assume from now on that this
is done.

Denote by B′
b the simulation of Bb except for the following modification. Denote by Ml

some fixed mix-server with l �∈ IM . Instead of letting it execute the prover of Protocol
6-1, or Protocol 6-2 the honest verifier zero-knowledge simulator guaranteed to exist by
Proposition 6-3 and Proposition 6-4 respectively is invoked by programming the coin-flipping
functionality FCF.

Claim 4 |Pr[Bb = 1] − Pr[B′
b = 1]| is negligible.

Proof. This follows directly from the honest verifier zero-knowledge property of Protocol 6-1
and Protocol 6-2. �

BGN Case. Simply write B′′
0 instead of B′

0 to allow a single proof for the two cases (we are
taking care about some special features of the Paillier case below).

Paillier Case. In this case we need to take care of the fact that the inner re-encryption
factors used by the simulator to simulate decryption are independently chosen from the true
re-encryption factors generated in Protocol 6-3.

Denote by B′′
0 the simulation of B′

0 except that the former uses the re-encryption factors
extracted from the executions of Protocol 6-2.

Claim 5 (Paillier Case) |Pr[B′
0 = 1] − Pr[B′′

0 = 1]| is negligible.

Proof. Denote by Advind the polynomial indistinguishability adversary that takes n as input
and simulates B′

0 except that in Protocol 6-3 Ml computes its output cj as follows. It

generates two random lists r
(0)
i , r

(1)
i ∈ (Z∗

n)N and hands these to the experiment. The

experiment returns cj = Epai
n3 (r

(b)
i) for a random b ∈ {0, 1}, which is used in the continued

simulation. Then it defines r̄i = r
(1)
i

∏k
j=l+1 rj,i, where rj,i are the values extracted by the

knowledge extractors or chosen by simulated honest mix-servers. Note that if b = 0, the the
simulation is identically distributed to B′

0 and otherwise statistically close distributed to B′′
0 .

The standard extension of polynomial indistinguishability to polynomial length lists of
ciphertexts now implies the claim. �

At this point we have reduced the difference between B′′
0 and B′′

1 to how decryption is
simulated. In the former decryption is simulated incorrectly by simply outputting the correct
messages in some randomly chosen order, whereas in the latter the correspondence between
individual ciphertexts and output messages is preserved.

Claim 6 |Pr[B′′
0 = 1] − Pr[B′′

1 = 1]| is negligible.

237

Proof. Consider the following polynomial indistinguishability adversary Advind to the obfus-
cation of the decryption/re-encryption shuffle. It accepts a public key pk as input. Then
it simulates B′′

0 until some fixed simulated honest mix-server Ml with l �∈ IM is about to
produce its output in the mixnet.

The adversary Advind chooses π(0), π(1) ∈ ΣN randomly and defines πsim = π(1)πl+1 · · ·πk,
and πl = π(0). Due to the group properties of ΣN , this does not change the distribution of
πsim in either B′′

0 or B′′
1 .

BGN Case. The adversary Advind hands (DS bgn

π(0) ,DS bgn

π(1)) to the experiment and waits

until it returns an obfuscation O(pk, sk,DS bgn

π(b)) for a random b. It extracts the encrypted

permutation matrix Λ̃π(b)
from the obfuscated shuffle and uses it as Ml’s output.

Paillier Case. Denote by r = (r1, . . . , rN) the joint randomization values such that
Dpai

p,3(C0) is the diagonal matrix with diagonal (rn
i mod n2). These factors can be computed,

from the witnesses extracted from the corrupt mix-servers in Protocol 6-2. The adversary
Advind hands (RS pai

π(0),r
,RS pai

π(1),r
) to the experiment and waits until it returns an obfuscation

O(pk, sk,RS pai

π(b)) for a random b. It extracts the encrypted re-encryption and permutation

matrix Λ̃π(b)
from the obfuscated shuffle and uses it as Ml’s output.

We conclude that Expoind−b

RSpai
N ,Advind

(κ) is identically distributed to B′′
b . Then the claim follows

from the polynomial indistinguishability of the cryptosystem, since an expected polynomial
time distinguisher can be turned into a strict polynomial time distinguisher using Markov’s
inequality in the standard way. �

Conclusion of Proof of Proposition. To conclude the proof we simply note that Claim
1-6 implies that |Pr[Tideal(Adv) = 1]−Pr[Treal(Adv) = 1]| is negligible for any real adversary
Adv.

6.11 Alternate Modeling using Obfuscation

We modeled our constructions in the public-key obfuscation model of Ostrovsky and Skeith
[132], in large part because the indistinguishability property of this model maps quite well
to the indistinguishability of our obfuscated shuffles: an adversary should be unable to
determine any information about the permutation encoded in an obfuscated shuffle. In this
section, we very briefly note that we could have modeled our construction in the obfuscation
model of Barak et al. [12] and Goldwasser and Tauman-Kalai [78].

Deterministic Mixing. To perform obfuscation in the model of Barak et al. or Tauman-
Kalai and Goldwasser, one must first define the exact functionality that will be obfuscated.
In our case, the functionality must capture the shuffling actions of a mixnet, but also an
additional property of determinism: the shuffle permutation is fixed ahead of time once and

238

for all, and, given a particular sequence of input ciphertexts, the obfuscated functionality
always produces the same exact set of outputs. We can call this a deterministic mixing
functionality.

This functionality can be realized if we assume that key generation for the cryptosystem
will be performed as part of the sampling of the functionality family. Then, a simple program
can, given the public and secret keys (we are not worried about security yet, only whether
this functionality can be realized to begin with) and a fixed permutation of size N :

1. decrypt the input ciphertexts

2. use a PRF (pseudo-random function) on the sequence of input ciphertexts to generate
randomization factors

3. shuffle the decrypted plaintexts according to the fixed permutation, and encrypt them
with the newly generated randomization factors.

4. when queried, provide either the permutation size N or the public key pk

A more advanced implementation could be achieved without the secret key, using a cryp-
tosystem that supports reencryption. Again, the randomization values would be generated
using a PRF on the sequence of input ciphertexts.

Finally, a last implementation can simply do exactly what we suggest in this work, in
particular in the BGN case: generate a mixing matrix using only the permutation and some
randomization factors, and perform the matrix multiplication to mix. In the “black-box”
version of this implementation of the functionality, the matrix would remain “inside the
black box,” of course.

Security Property: Back to Indistinguishability! Given the above functionality def-
inition of deterministic mixing, it is clear that we can obfuscate this functionality: simply
output the matrix in question and let others perform the mixing. In fact, it is almost as if
wrapping the matrix inside a black box functionality served only to prove the obfuscation
property to begin with! Of course, the semantic security of the BGN cryptosystem guaran-
tees computational obfuscation: a simulator can simply re-create a new encrypted matrix
and pass it to the adversary. If the adversary can distinguish the two encrypted permutation
matrices, then it has broken the cryptosystem’s semantic security.

What is interesting here is that this secure obfuscation does not, in any way, imply that
we have built a secure mixing functionality. The only thing we have shown is that some
functionality—deterministic mixing—was properly obfuscated. We still have to show that
deterministic mixing is secure to begin with. How can we define this security? It is likely
that we must return to an indistinguishability definition!

In other words, proving obfuscation in this generic setting requires us to recreate the tools
defined by Ostrovsky and Skeith for public-key obfuscation. This explains why we picked
the model of Ostrovsky and Skeith to begin with.

239

6.12 Conclusion

It is surprising that a functionality as powerful as a shuffle can be public-key obfuscated
in any useful way. It is even more surprising that this can be achieved using the Paillier
cryptosystem which, in contrast to the BGN cryptosystem, was not specifically designed to
have the kind of “homomorphic” properties we exploit. One intriguing question is whether
other useful “homomorphic” properties have been overlooked in existing cryptosystems.

From a practical point of view we stress that, although the performance of our mixnet
is much worse than that of known constructions, it exhibits a property which no previous
construction has: a relatively small group of mix-servers can prepare obfuscated shuffles
for voting precincts. The precincts can compute the shuffling without any private key and
produce ciphertexts ready for decryption.

240

Bibliography

[1] Masayuki Abe. Universally verifiable MIX with verification work independent of the
number of MIX servers. In Nyberg [126], pages 437–447.

[2] Masayuki Abe. Mix-networks on permutation networks. In Kwok-Yan Lam, Eiji
Okamoto, and Chaoping Xing, editors, ASIACRYPT, volume 1716 of Lecture Notes in
Computer Science, pages 258–273. Springer, 1999.

[3] ACM. Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Com-
puting, 1990. ACM, 1990.

[4] ACM. Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Com-
puting, 23-25 May 1994, Montréal, Québec, Canada. ACM, 1994.

[5] ACM. PODC 2001, Proceedings of the Twentieth Annual ACM Symposium on Prin-
ciples of Distributed Computing, August 26-29, 2001, Newport, Rhode Island, USA.
ACM, 2001.

[6] Ben Adida and C. Andrew Neff. Ballot Casting Assurance. In EVT ’06, Proceedings
of the First Usenix/ACCURATE Electronic Voting Technology Workshop, August 1st
2006, Vancouver, BC,Canada., 2006. Available online at http://www.usenix.org/

events/evt06/tech/.

[7] Ben Adida and Douglas Wikström. How to Shuffle in Public. Cryptology ePrint
Archive, Report 2005/394, 2006. http://eprint.iacr.org/2005/394.

[8] Alan A. Reiter. Hong Kong residents asked to photograph voting for pro-Beijing candi-
dates, August 2004. http://www.wirelessmoment.com/2004/08/hong kong resid.

html.

[9] Andrew Gumbel. Steal This Vote: Dirty Elections and the Rotten History of Democracy
in America. Nation Books, July 2005.

[10] Ari Shapiro. Absentee Ballots Go Missing in Florida’s Broward County, October 2004.
http://www.npr.org/templates/story/story.php?storyId=4131522.

[11] Avi Rubin. An Election Day clouded by doubt, October 2004. http://avirubin.

com/vote/op-ed.html.

241

[12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Kilian [108],
pages 1–18.

[13] Olivier Baudron, Pierre-Alain Fouque, David Pointcheval, Jacques Stern, and Guil-
laume Poupard. Practical multi-candidate election system. In PODC [5], pages 274–
283.

[14] Donald Beaver. Foundations of secure interactive computing. In Feigenbaum [63],
pages 377–391.

[15] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification for modular
exponentiation and digital signatures. In Nyberg [126], pages 236–250.

[16] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Santis [154],
pages 92–111.

[17] Ben Adida and C. Andrew Neff. Assisted Human Interactive Proofs: A Formal Treat-
ment of Secret Voter Receipts, 2006. In preparation.

[18] Ben Adida and Ronald L. Rivest. Scratch & Vote: Self-Contained Paper-Based Crypto-
graphic Voting. In Roger Dingledine and Ting Yu, editors, ACM Workshop on Privacy
in the Electonic Society. ACM, 2006. To Appear.

[19] Josh Benaloh and Moti Yung. Distributing the power of government to enhance the
power of voters. In PODC, pages 52–62. ACM, 1986.

[20] Josh Cohen Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections (ex-
tended abstract). In STOC [4], pages 544–553.

[21] Avrim Blum, Merrick Furst, Michael Kearns, and Richard J. Lipton. Cryptographic
Primitives Based on Hard Learning Problems. In Stinson [165], pages 278–291.

[22] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications (extended abstract). In STOC, pages 103–112. ACM, 1988.

[23] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. In
Joe Kilian, editor, TCC, volume 3378 of Lecture Notes in Computer Science, pages
325–342. Springer, 2005.

[24] Dan Boneh, editor. Advances in Cryptology - CRYPTO 2003, 23rd Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003,
Proceedings, volume 2729 of Lecture Notes in Computer Science. Springer, 2003.

[25] Dan Boneh and Matthew K. Franklin. Efficient Generation of Shared RSA Keys
(Extended Abstract). In Kaliski [103], pages 425–439.

242

[26] Dan Boneh and Philippe Golle. Almost entirely correct mixing with applications to
voting. In Vijayalakshmi Atluri, editor, ACM Conference on Computer and Commu-
nications Security, pages 68–77. ACM, 2002.

[27] Stefan Brands. Untraceable off-line cash in wallets with observers (extended abstract).
In Stinson [165], pages 302–318.

[28] C. Andrew Neff. Codebooks. Unpublished Manuscript.

[29] C. Andrew Neff. Practical High Certainty Intent Verification for Encrypted Votes.
http://votehere.com/vhti/documentation/vsv-2.0.3638.pdf, last viewed on Au-
gust 30th, 2006.

[30] C. Andrew Neff. Coerced Randomization, April 2006. Private conversations with and
unpublished manuscript by Andy Neff.

[31] Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial
information. In Kaliski [103], pages 455–469.

[32] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science, FOCS
2001, 14-17 October 2001, Las Vegas, Nevada, USA, Proceedings, pages 136–145. IEEE
Computer Society, 2001. (Full version at Cryptology ePrint Archive, Report 2000/067,
http://eprint.iacr.org, October, 2001.).

[33] Ran Canetti and Rosario Gennaro. Incoercible multiparty computation (extended
abstract). In 37th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 1996), 1996, Proceedings, pages 504–513. IEEE Computer Society, 1996.

[34] CBS News. How to Spend a Billion Dollars, May 2004. http://www.cbsnews.com/

stories/2004/05/12/politics/main617059.shtml.

[35] CBS News. Switzerland Tries Internet Voting, September 2004. http://www.cbsnews.
com/stories/2004/09/25/world/main645615.shtml.

[36] Charles Stewart III and Julie Brogan. Voting in Massachusetts, August 2003. http:

//www.vote.caltech.edu/media/documents/VotinginMass.pdf.

[37] D. Chaum and T. Pedersen. Wallet Databases with Observers. In Ernest F. Brickell,
editor, CRYPTO, volume 740 of Lecture Notes in Computer Science, pages 89–105.
Springer, 1993.

[38] David Chaum. Punchscan. http://punchscan.org viewed on August 13th, 2006.

[39] David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM, 24(2):84–88, 1981.

243

[40] David Chaum. Secret-Ballot Receipts: True Voter-Verifiable Elections. IEEE Security
and Privacy, 02(1):38–47, 2004.

[41] David Chaum, Peter Y. A. Ryan, and Steve Schneider. A practical voter-verifiable
election scheme. In Sabrina De Capitani di Vimercati, Paul F. Syverson, and Dieter
Gollmann, editors, ESORICS, volume 3679 of Lecture Notes in Computer Science,
pages 118–139. Springer, 2005.

[42] Richard Clayton. Improving onion notation. In Roger Dingledine, editor, Privacy
Enhancing Technologies, volume 2760 of Lecture Notes in Computer Science, pages
81–87. Springer, 2003.

[43] Josh D. Cohen and Michael J. Fischer. A robust and verifiable cryptographically secure
election scheme. In FOCS, pages 372–382. IEEE Computer Society, 1985.

[44] Ronald Cramer, Ivan Damgard, and Berry Schoenmakers. Proofs of Partial Knowledge
and Simplified Design of Witness Hiding Protocols. In Desmedt [52], pages 174–187.

[45] Ronald Cramer, Matthew Franklin, Berry Schoenmakers, and Moti Yung. Multi-
authority Secret-Ballot Elections with Linear Work. In Ueli M. Maurer, editor, EU-
ROCRYPT, volume 1070 of Lecture Notes in Computer Science, pages 72–83. Springer,
1996.

[46] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A Secure and Optimally
Efficient Multi-Authority Election Scheme. In Walter Fumy, editor, EUROCRYPT,
volume 1233 of Lecture Notes in Computer Science, pages 481–490. Springer, 1997.

[47] Ivan Damg̊ard. Towards practical public key systems secure against chosen ciphertext
attacks. In Feigenbaum [63], pages 445–456.

[48] Ivan Damg̊ard and Mats Jurik. A generalisation, a simplification and some appli-
cations of paillier’s probabilistic public-key system. In Kwangjo Kim, editor, Public
Key Cryptography, volume 1992 of Lecture Notes in Computer Science, pages 119–136.
Springer, 2001.

[49] Ivan Damg̊ard and Maciej Koprowski. Practical Threshold RSA Signatures without a
Trusted Dealer. In Pfitzmann [137], pages 152–165.

[50] David Jefferson, Aviel D. Rubin, Barbara Simons, David Wagner. A Security Analysis
of the Secure Electronic Registration and Voting Experiment (SERVE). http://www.
servesecurityreport.org/.

[51] David Wagner. Written Testimony Before the Committee on Science and Committee
on House Administration U.S. House of Representatives, July 2006. http://www.

house.gov/science/hearings/full06/July%2019/Wagner.pdf.

244

[52] Yvo Desmedt, editor. Advances in Cryptology - CRYPTO ’94, 14th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 21-25, 1994,
Proceedings, volume 839 of Lecture Notes in Computer Science. Springer, 1994.

[53] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard, editor,
CRYPTO, volume 435 of Lecture Notes in Computer Science, pages 307–315. Springer,
1990.

[54] Yvo Desmedt and Yair Frankel. Shared generation of authenticators and signatures
(extended abstract). In Feigenbaum [63], pages 457–469.

[55] Yvo Desmedt and Kaoru Kurosawa. How to break a practical mix and design a new
one. In Preneel [139], pages 557–572.

[56] Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography. IEEE Trans.
Inform. Theory, IT-22:644–654, November 1976.

[57] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The second-generation
onion router. In USENIX Security Symposium, pages 303–320. USENIX, 2004.

[58] Douglas Jones. Parallel Testing: A menu of options, August 2004. http://www.cs.

uiowa.edu/∼jones/voting/miamiparallel.pdf.

[59] Stefan Droste. New results on visual cryptography. In Koblitz [109], pages 401–415.

[60] Quang Viet Duong and Kaoru Kurosawa. Almost ideal contrast visual cryptography
with reversing. In Okamoto [131], pages 353–365.

[61] Election Data Services. New Study Shows 50 Million Voters Will Use Electronic Voting
Systems, 32 Million Still with Punch Cards in 2004, February 2004. http://www.

electiondataservices.com/EDSInc VEstudy2004.pdf.

[62] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols.
In STOC [3], pages 416–426.

[63] Joan Feigenbaum, editor. Advances in Cryptology - CRYPTO ’91, 11th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1991,
Proceedings, volume 576 of Lecture Notes in Computer Science. Springer, 1992.

[64] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. In
FOCS, pages 427–437. IEEE Computer Society, 1987.

[65] Amos Fiat and Adi Shamir. How to prove yourself. practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, CRYPTO, volume 263 of
Lecture Notes in Computer Science, pages 186–189. Springer, 1987.

245

[66] Kevin Fisher, Richard Carback, and Alan Sherman. Punchscan: Introduction and
System Definition of a High-Integrity Election System. In Peter A. Ryan, editor, Pro-
ceedings of the IAVoSS Workshop On Trustworthy Elections (WOTE’06), Cambridge,
UK, June 2006.

[67] Florida Department of State. Official Results of the November 7, 2000 General
Election, 2000. http://election.dos.state.fl.us/elections/resultsarchive/

SummaryRpt.asp?ElectionDate=11/7/2000&Race=PRE&DATAMODE=.

[68] Pierre-Alain Fouque, Guillaume Poupard, and Jacques Stern. Sharing decryption in
the context of voting or lotteries. In Yair Frankel, editor, Financial Cryptography,
volume 1962 of Lecture Notes in Computer Science, pages 90–104. Springer, 2001.

[69] Yair Frankel, Philip D. MacKenzie, and Moti Yung. Robust efficient distributed RSA-
key generation. In STOC, pages 663–672. ACM, 1994.

[70] Jun Furukawa and Kazue Sako. An efficient scheme for proving a shuffle. In Kilian
[108], pages 368–387.

[71] Taher El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. IEEE Trans. Inform. Theory, 31:469–472, 1985.

[72] Rosario Gennaro. Achieving independence efficiently and securely. In PODC, pages
130–136. ACM, 1995.

[73] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust and
Efficient Sharing of RSA Functions. In Koblitz [109], pages 157–172.

[74] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure dis-
tributed key generation for discrete-log based cryptosystems. In Stern [164], pages
295–310.

[75] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, Cambridge, UK, 2001.

[76] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In STOC, pages 218–229.
ACM, 1987.

[77] Shafi Goldwasser and Yael Tauman Kalai. On the (In)security of the Fiat-Shamir
Paradigm. In FOCS, pages 102–. IEEE Computer Society, 2003.

[78] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with
auxiliary input. In FOCS, pages 553–562. IEEE Computer Society, 2005.

[79] Shafi Goldwasser and Leonid A. Levin. Fair computation of general functions in pres-
ence of immoral majority. In Alfred Menezes and Scott A. Vanstone, editors, CRYPTO,
volume 537 of Lecture Notes in Computer Science, pages 77–93. Springer, 1991.

246

[80] Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to play mental
poker keeping secret all partial information. In STOC ’82: Proceedings of the Four-
teenth Annual ACM symposium on Theory of Computing, pages 365–377. ACM, 1982.

[81] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984.

[82] Philippe Golle, Markus Jakobsson, Ari Juels, and Paul F. Syverson. Universal re-
encryption for mixnets. In Okamoto [131], pages 163–178.

[83] Philippe Golle and Ari Juels. Parallel mixing. In Vijayalakshmi Atluri, Birgit Pfitz-
mann, and Patrick Drew McDaniel, editors, ACM Conference on Computer and Com-
munications Security, pages 220–226. ACM, 2004.

[84] Philippe Golle, Sheng Zhong, Dan Boneh, Markus Jakobsson, and Ari Juels. Optimistic
mixing for exit-polls. In Yuliang Zheng, editor, ASIACRYPT, volume 2501 of Lecture
Notes in Computer Science, pages 451–465. Springer, 2002.

[85] T. Granlund. GNU Multiple Precision Arithmetic Library (GMP). Software available
at http://swox.com/gmp, March 2005.

[86] Dimitris Gritzalis, editor. Secure Electronic Voting. Kluwer Academic Publishers,
2002.

[87] Jens Groth. A verifiable secret shuffle of homomorphic encryptions. In Yvo Desmedt,
editor, Public Key Cryptography, volume 2567 of Lecture Notes in Computer Science,
pages 145–160. Springer, 2002.

[88] Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-knowledge protocol
fitted to security microprocessor minimizing both transmission and memory. In C. G.
Günther, editor, EUROCRYPT, volume 330 of Lecture Notes in Computer Science,
pages 123–128. Springer, 1988.

[89] Jonathan Herzog, Moses Liskov, and Silvio Micali. Plaintext awareness via key regis-
tration. In Boneh [24], pages 548–564.

[90] Martin Hirt and Kazue Sako. Efficient receipt-free voting based on homomorphic
encryption. In Preneel [139], pages 539–556.

[91] Nicholas J. Hopper and Manuel Blum. Secure human identification protocols. In Colin
Boyd, editor, ASIACRYPT, volume 2248 of Lecture Notes in Computer Science, pages
52–66. Springer, 2001.

[92] Markus Jakobsson. A practical mix. In Nyberg [126], pages 448–461.

[93] Markus Jakobsson. Flash mixing. In PODC, pages 83–89. ACM, 1999.

247

[94] Markus Jakobsson and Ari Juels. Millimix: Mixing in small batches. Technical Report
99-33, Center for Discrete Mathematics & Theoretical Computer Science (DIMACS),
1999.

[95] Markus Jakobsson and Ari Juels. An optimally robust hybrid mix network. In PODC
[5], pages 284–292.

[96] Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making mix nets robust for
electronic voting by randomized partial checking. In Dan Boneh, editor, USENIX
Security Symposium, pages 339–353. USENIX, 2002.

[97] James Robinson and Jean-Marie Baland. Land and Power: Theory and Evidence,
2005. http://repositories.cdlib.org/berkeley econ211/spring2005/16/.

[98] John Wack. Voter Verified Paper Audit Trail Update, March 2006. http://vote.

nist.gov/032906VVPAT-jpw.pdf.

[99] Douglas W. Jones. A Brief Illustrated History of Voting, 2001-2003. http://www.cs.
uiowa.edu/∼jones/voting/pictures/.

[100] Joseph P. Harris. Election Administration in the United States. Brookings Institute
Press, 1934.

[101] Robert F. Kennedy Jr. Was the 2004 Election Stolen?, June 2006. In Rolling Stone
Magazine.

[102] Ari Juels and Stephen A. Weis. Authenticating Pervasive Devices with Human Proto-
cols. In Shoup [162], pages 293–308.

[103] Burton S. Kaliski, editor. Advances in Cryptology - CRYPTO ’97, 17th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 17-21, 1997,
Proceedings, volume 1294 of Lecture Notes in Computer Science. Springer, 1997.

[104] Chris Karlof, Naveen Sastry, and David Wagner. Cryptographic voting protocols: A
systems perspective. In USENIX Security Symposium, pages 33–50. USENIX, 2005.

[105] Jonathan Katz, Steven Myers, and Rafail Ostrovsky. Cryptographic counters and
applications to electronic voting. In Pfitzmann [137], pages 78–92.

[106] Aggelos Kiayias and Moti Yung. Self-tallying elections and perfect ballot secrecy. In
David Naccache and Pascal Paillier, editors, Public Key Cryptography, volume 2274 of
Lecture Notes in Computer Science, pages 141–158. Springer, 2002.

[107] Aggelos Kiayias and Moti Yung. The vector-ballot e-voting approach. In Ari Juels,
editor, Financial Cryptography, volume 3110 of Lecture Notes in Computer Science,
pages 72–89. Springer, 2004.

248

[108] Joe Kilian, editor. Advances in Cryptology - CRYPTO 2001, 21st Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 19-23, 2001,
Proceedings, volume 2139 of Lecture Notes in Computer Science. Springer, 2001.

[109] Neal Koblitz, editor. Advances in Cryptology - CRYPTO ’96, 16th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 18-22, 1996,
Proceedings, volume 1109 of Lecture Notes in Computer Science. Springer, 1996.

[110] Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. On the composition of authenti-
cated byzantine agreement. In STOC, pages 514–523. ACM, 2002.

[111] Lynn Landes. The Nightmare Scenario Is Here - Computer Voting With No Paper Trail,
August 2002. http://www.ecotalk.org/Dr.RebeccaMercuriComputerVoting.htm.

[112] Lynn Landes. Scrap the secret ballot - return to open voting, November 2005. http://
www.opednews.com/articles/opedne lynn lan 051104 scrap the secret b.htm.

[113] Marsha Walton. Voting methods under close watch, October 2004. http://www.cnn.
com/2004/TECH/10/26/evote/index.html.

[114] A. Menezes, P. Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC
Press, 1997.

[115] Rebecca Mercuri. Voting-machine risks. Commun. ACM, 35(11):138, 1992.

[116] Silvio Micali and Phillip Rogaway. Secure computation (abstract). In Feigenbaum [63],
pages 392–404.

[117] Michael Shamos. Paper v. Electronic Voting Records - An Assessment, April 2004.
http://www.electiontech.org/downloads/Paper%20vs%20Electronic.pdf.

[118] Markus Michels and Patrick Horster. Some remarks on a receipt-free and universally
verifiable mix-type voting scheme. In Kwangjo Kim and Tsutomu Matsumoto, editors,
ASIACRYPT, volume 1163 of Lecture Notes in Computer Science, pages 125–132.
Springer, 1996.

[119] Masashi Mitomo and Kaoru Kurosawa. Attack for flash mix. In Okamoto [130], pages
192–204.

[120] Moni Naor and Benny Pinkas. Visual authentication and identification. In Kaliski
[103], pages 322–336.

[121] Moni Naor and Adi Shamir. Visual cryptography. In Santis [154], pages 1–12.

[122] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In STOC [3], pages 427–437.

[123] National Transportation Safety Board. http://www.ntsb.gov/.

249

[124] C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. In ACM
Conference on Computer and Communications Security, pages 116–125. ACM, 2001.

[125] Valtteri Niemi and Ari Renvall. How to prevent buying of votes in computer elections.
In Josef Pieprzyk and Reihaneh Safavi-Naini, editors, ASIACRYPT, volume 917 of
Lecture Notes in Computer Science, pages 164–170. Springer, 1995.

[126] Kaisa Nyberg, editor. Advances in Cryptology - EUROCRYPT ’98, International Con-
ference on the Theory and Application of Cryptographic Techniques, Espoo, Finland,
May 31 - June 4, 1998, Proceeding, volume 1403 of Lecture Notes in Computer Science.
Springer, 1998.

[127] Wakaha Ogata, Kaoru Kurosawa, Kazue Sako, and Kazunori Takatani. Fault tolerant
anonymous channel. In Yongfei Han, Tatsuaki Okamoto, and Sihan Qing, editors,
ICICS, volume 1334 of Lecture Notes in Computer Science, pages 440–444. Springer,
1997.

[128] Miyako Ohkubo and Masayuki Abe. A length-invariant hybrid mix. In Okamoto [130],
pages 178–191.

[129] Tatsuaki Okamoto. Receipt-free electronic voting schemes for large scale elections.
In Bruce Christianson, Bruno Crispo, T. Mark A. Lomas, and Michael Roe, editors,
Security Protocols Workshop, volume 1361 of Lecture Notes in Computer Science, pages
25–35. Springer, 1998.

[130] Tatsuaki Okamoto, editor. Advances in Cryptology - ASIACRYPT 2000, 6th Interna-
tional Conference on the Theory and Application of Cryptology and Information Secu-
rity, Kyoto, Japan, December 3-7, 2000, Proceedings, volume 1976 of Lecture Notes in
Computer Science. Springer, 2000.

[131] Tatsuaki Okamoto, editor. Topics in Cryptology - CT-RSA 2004, The Cryptographers’
Track at the RSA Conference 2004, San Francisco, CA, USA, February 23-27, 2004,
Proceedings, volume 2964 of Lecture Notes in Computer Science. Springer, 2004.

[132] Rafail Ostrovsky and William E. Skeith III. Private Searching on Streaming Data. In
Shoup [162], pages 223–240.

[133] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Stern [164], pages 223–238.

[134] Choonsik Park, Kazutomo Itoh, and Kaoru Kurosawa. Efficient anonymous channel
and all/nothing election scheme. In Tor Helleseth, editor, EUROCRYPT, volume 765
of Lecture Notes in Computer Science, pages 248–259. Springer, 1994.

[135] Torben P. Pedersen. A threshold cryptosystem without a trusted party (extended
abstract). In Donald W. Davies, editor, EUROCRYPT, volume 547 of Lecture Notes
in Computer Science, pages 522–526. Springer, 1991.

250

[136] Birgit Pfitzmann. Breaking efficient anonymous channel. In Santis [154], pages 332–
340.

[137] Birgit Pfitzmann, editor. Advances in Cryptology - EUROCRYPT 2001, International
Conference on the Theory and Application of Cryptographic Techniques, Innsbruck,
Austria, May 6-10, 2001, Proceeding, volume 2045 of Lecture Notes in Computer Sci-
ence. Springer, 2001.

[138] Birgit Pfitzmann and Andreas Pfitzmann. How to break the direct rsa-implementation
of mixes. In Jean-Jacques Quisquater and Joos Vandewalle, editors, EUROCRYPT,
volume 434 of Lecture Notes in Computer Science, pages 373–381. Springer, 1990.

[139] Bart Preneel, editor. Advances in Cryptology - EUROCRYPT 2000, International Con-
ference on the Theory and Application of Cryptographic Techniques, Bruges, Belgium,
May 14-18, 2000, Proceeding, volume 1807 of Lecture Notes in Computer Science.
Springer, 2000.

[140] Charles Rackoff and Daniel R. Simon. Cryptographic defense against traffic analysis.
In STOC, pages 672–681. ACM, 1993.

[141] Ralph C. Merkle. Secrecy, authentication, and public key systems. PhD thesis, Stanford
University, 1979.

[142] Hugo Krawczyk Ran Canetti and Jesper Buus Nielsen. Relaxing chosen-ciphertext
security. In Boneh [24], pages 565–582.

[143] Randal C. Archibold. Arizona Ballot Could Become Lottery Ticket, July 2006.
http://www.nytimes.com/2006/07/17/us/17voter.html?ex=1310788800&en=

9626060428eeb1ed&ei=5088&partner=rssnyt&emc=rss.

[144] Brian Randell and Peter Y. A. Ryan. Voting technologies and trust. In Theodosis
Dimitrakos, Fabio Martinelli, Peter Y. A. Ryan, and Steve A. Schneider, editors, For-
mal Aspects in Security and Trust, volume 3866 of Lecture Notes in Computer Science,
pages 1–4. Springer, 2006.

[145] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[146] Robert Simeon Fay. Card trick. http://www.caveofmagic.com/pickcrd2.htm, vis-
ited on August 23rd 2006.

[147] Ronald L. Rivest. Remarks on The Technologies of Electronic Voting,
Harvard University’s Kennedy School of Government Digital Voting Sym-
posium. http://theory.lcs.mit.edu/∼rivest/2004-06-01%20Harvard%20KSG%
20Symposium%20Evoting%20remarks.txt.

251

[148] Roy G. Saltman. The History and Politics of Voting Technology. Palgrave Macmillan,
2006.

[149] Peter Y.A. Ryan and Steve A. Schneider. Prêt à voter with re-encryption mixes. In
ESORICS, Lecture Notes in Computer Science. Springer, 2006. To Appear.

[150] Kazue Sako and Joe Kilian. Secure voting using partially compatible homomorphisms.
In Desmedt [52], pages 411–424.

[151] Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme - a practical solu-
tion to the implementation of a voting booth. In Louis C. Guillou and Jean-Jacques
Quisquater, editors, EUROCRYPT, volume 921 of Lecture Notes in Computer Science,
pages 393–403. Springer, 1995.

[152] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end arguments in
system design. ACM Transactions on Computer Systems, 2(4):277–288, November
1984.

[153] San Diego Elections Task Force. Elections Task Force Recommendation: Mail-Only
Ballot Election, July 2006. http://www.sandiego.gov/electionstaskforce/pdf/

reports/mail balloting report.pdf.

[154] Alfredo De Santis, editor. Advances in Cryptology - EUROCRYPT ’94, Workshop on
the Theory and Application of Cryptographic Techniques, Perugia, Italy, May 9-12,
1994, Proceedings, volume 950 of Lecture Notes in Computer Science. Springer, 1995.

[155] Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti Yung. How to share a function
securely. In STOC [4], pages 522–533.

[156] Bruce Schneier. Crypto-gram newsletter, February 2001. http://www.schneier.com/
crypto-gram-0102.html#10.

[157] Claus P. Schnorr. Efficient identification and signatures for smartcards. In Feigenbaum
[63], page 239.

[158] Scratch ’N Win Ballots To Debut In November, July 2006. http://www.theonion.

com/content/node/50640.

[159] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[160] Daniel Shanks. Class number, a theory of factorization, and genera. In Number Theory
Institute, 1969, volume 20 of Proceedings of Symposia in Pure Mathematics, pages 415–
440. American Math Society, 1969.

[161] Victor Shoup. Practical threshold signatures. In Preneel [139], pages 207–220.

252

[162] Victor Shoup, editor. Advances in Cryptology - CRYPTO 2005: 25th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 14-18, 2005,
Proceedings, volume 3621 of Lecture Notes in Computer Science. Springer, 2005.

[163] Stephanie Chasteen. Electronic voting unreliable without receipt, expert says,
February 2004. http://news-service.stanford.edu/news/2004/february18/

aaas-dillsr-218.html.

[164] Jacques Stern, editor. Advances in Cryptology - EUROCRYPT ’99, International Con-
ference on the Theory and Application of Cryptographic Techniques, Prague, Czech Re-
public, May 2-6, 1999, Proceeding, volume 1592 of Lecture Notes in Computer Science.
Springer, 1999.

[165] Douglas R. Stinson, editor. Advances in Cryptology - CRYPTO ’93, 13th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 22-26,
1993, Proceedings, volume 773 of Lecture Notes in Computer Science. Springer, 1994.

[166] Ted Selker. Testimony on voter verification presented to Senate Committee on
Rules and Administration, July 2005. http://rules.senate.gov/hearings/2005/

Selker062105.pdf.

[167] The Barcode Software Center. PDF-417, 2003. http://www.mecsw.com/specs/

pdf417.html.

[168] Yiannis Tsiounis and Moti Yung. On the security of elgamal based encryption. In
Hideki Imai and Yuliang Zheng, editors, Public Key Cryptography, volume 1431 of
Lecture Notes in Computer Science, pages 117–134. Springer, 1998.

[169] Verified Voting Foundation. http://verifiedvoting.org.

[170] Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford. CAPTCHA:
Using Hard AI Problems for Security. In Eli Biham, editor, EUROCRYPT, volume
2656 of Lecture Notes in Computer Science, pages 294–311. Springer, 2003.

[171] Luis von Ahn, Manuel Blum, and John Langford. Telling humans and computers apart
automatically. Commun. ACM, 47(2):56–60, 2004.

[172] The Vote By Mail Project. http://www.votebymailproject.org/.

[173] Hoeteck Wee. On obfuscating point functions. In Harold N. Gabow and Ronald Fagin,
editors, STOC, pages 523–532. ACM, 2005.

[174] Wikipedia. 2D Barcode. http://en.wikipedia.org/wiki/2D barcode.

[175] Wikipedia. United States Presidential Election, 2000. http://en.wikipedia.org/

wiki/U.S. presidential election, 2000, viewed on June 6th, 2006.

253

[176] Wikipedia. Ostracon — wikipedia, the free encyclopedia, 2006. [Online; accessed
28-July-2006].

[177] Wikipedia. Silk Air 185, June 2006. http://en.wikipedia.org/wiki/Silkair

Flight 185.

[178] Douglas Wikström. Five practical attacks for “optimistic mixing for exit-polls”. In
Mitsuru Matsui and Robert J. Zuccherato, editors, Selected Areas in Cryptography,
volume 3006 of Lecture Notes in Computer Science, pages 160–175. Springer, 2004.

[179] Douglas Wikström. A universally composable mix-net. In Moni Naor, editor, TCC,
volume 2951 of Lecture Notes in Computer Science, pages 317–335. Springer, 2004.

[180] Douglas Wikström. A sender verifiable mix-net and a new proof of a shuffle. In Bimal K.
Roy, editor, ASIACRYPT, volume 3788 of Lecture Notes in Computer Science, pages
273–292. Springer, 2005.

[181] Douglas Wikström and Jens Groth. An adaptively secure mix-net without erasures. In
Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, ICALP
(2), volume 4052 of Lecture Notes in Computer Science, pages 276–287. Springer, 2006.

[182] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS, pages 162–167. IEEE Computer Society, 1986.

254

