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Abstract. Continuing the work of Rabin and Rivest [1] we present another simple
and fast method for conducting end to end voting and allowing public verification
of correctness of the announced vote tallying results. This method was referred to
in [1] as the SV/VCP method. In the present note voter privacy protection is
achieved by use of a simple form of Multi Party Computations (MPC). At the end
of vote tallying process, random permutations of the cast votes are publicly
posted in the clear, without identification of voters or ballot ids. Thus vote
counting and assurance of correct form of cast votes are directly available. Also, a
proof of the claim that the revealed votes are a permutation of the concealed cast
votes is publicly posted and verifiable by any interested party.

Advantages of this method are: Easy understandability by non-cryptographers,
implementers and ease of use by voters and election officials. Direct handling of
complicated ballot forms. Independence from any specialized primitives. Speed of
vote-tallying and correctness proving: elections involving a million voters can be
tallied and proof of correctness of results posted within a few minutes.

Introduction and Infrastructure

The method of vote tallying and correctness proving described in this note can be
used in conjunction with any one of the vote casting, paper copy of vote and
paper receipt for voter described in [1]; see that paper for additional context.



Votes and values used in the system are described by integers x < M where, say,
M = 100.

In the following, additions and subtractions of values are performed mod M; we
illustrate with M = 100. Thus 38 +80=18; (—17) = 83.

The voter casts her vote in a Voting Booth by use of a Tablet. The vote is
transferred to a computer in the Voting Station. At the end of election-day Voting
stations transfer the votes to a Tally Server (TS) at the Vote Tallying Center (VTC).

The VTC also has a Proof Server (PS) which will prepare a publicly verifiable proof
of the correctness of the election results announced by the TS. The proof of
correctness will be publicly posted by the PS on an electronic Secure Bulletin
Board (SBB) accessible to voters, parties involved in the election, and the general
public.

In this note, to achieve high assurance of voter privacy the PS consists of nine
independent devices Py;, P,;, P3; ,j=1, 2,3 (considered as three rows of three
devices each). It will be demonstrated that as long as no more than two devices
leak out information, privacy of voters is protected. Generalizations for other
parameterizations will be described later.

The proof of correctness assures the correctness of the announced election
results no matter how the devices acted.

The system uses three pairs (e;, d;) of a Public Key Encryption method (PKE), for j
=1, 2, 3. Here g;is a public encryption key, and d; is the secret decryption key.

It also uses a commitment function COM(K, u) employing a (randomly chosen)
key K to commit to value u. COM can be implemented, say, by use of AES with
256 bit keys. It is assumed that COM is computationally hiding: given the value C =
COM(K, u), it is infeasible to gain any information about u. It also assumed that it
is computationally infeasible to find two pairs (K, u) # (K’, u’) such that COM(K, u)
= COM(K’, u’). This renders the commitment by COM to be computationally
binding. A commitment C can be opened in only one way.



Every Voter Tablet has all public encryption keys e;, j = 1, 2, 3. Every P;; has the
secret decryption key d; .

The Voter’s Tablet takes the Voter’s V vote w and randomly represents w as a
triple (x,y,z) such that

w=(x+Yy+2z) mod M.

It then creates random vector representations of x, y, and z as
X =(uy,vi) whereVal(X) = (u; +v;) mod M =x;
Y =(uy, v,) where Val(Y) = (u, + v;) mod M =y;
Z=(uz,vs) whereVal(Z) = (us + v3) mod M =z.

Tablet chooses for X random keys K; , K, and sends to P, ; via the Voting Station
the ballot representation consisting of

Ballot id (BLTid)
COMSV(X) = (COM(K]_, Ul), COM(Kz, Vl))
PKE(e1, Ky || K2)).

Similar messages are sent to P, , P3; using different pairs of random keys for each
commitment, and using e, for encrypting for P, ;, and e; for encryption for P ;.

In this way the Tablet sends a portion of a distributed representation of vote w to
the first device in each row (each portion being a commitment to a split-value
representation of a share of w, where the shares add up to w modulo M).

We assume that there are n voters and that the system uses some convention for
providing each ballot with a unique ballot id, BLTid.

All ballot information received from Tablets is publicly posted on the public
Secure Bulletin Board, so that voters may confirm their correct reception. To
simplify procedures, a voter is given the ballot id BLTid of her vote, and the



postings may be in order of ballot id. The voter may have a receipt from the
Tablet giving the hash of what should be posted, to simplify comparisons.

Now each P, ,, P>, P31, each using its private decryption key, internally opens its
received commitments.

Remark. The slowest computation in the above is PKE decryption. A simple
hybrid encryption method to set up private symmetric keys employing only one
PKE decryption by the Proof Server per Tablet may be used to reduce the overall
PKE decryption time significantly.

Overall Plan. The Multi-Party Proof Server Py, P,;, P3;,j=1, 2,3 will create and
publicly post m arrays of length n each of which is, verifiably, a secret random
permutation of the votes wyq, ..., w, in the clear.

This will be achieved by transforming the n concealed cast votes into 2m arrays
each of length n and each consisting of a different random permutation of the
votes re-concealed by the Proof Server. The number 2m used depends on the
degree of correctness assurance the system is designed to achieve. It will be seen,
following Theorem 2 in Section 5, that for example 2m=24 provides very high
assurance.

Cut and Choose. m of the 2m arrays will be randomly selected, posted in the
original order of the cast votes and proven to conceal the same vote values as the
array of cast votes.

Each of the remaining m arrays will be opened in its permuted order to reveal a
permutation of the votes wq, ..., w, .

The required computations by the Proof Server are additions mod M of integers
of size at most M, and concealment of integers u of size at most M as COM(K, u)
by any fast commitment function COM( , ). These computations are done on the
individual P;; and not in a multi-party fashion. They are executable on ordinary
desk top computers at the rate of millions of operations per second.



1. Split Value Representations of Values and Proofs of Equality
The method of Sections 1-2 follow [Rabin et-al, 2], [Micali, Rabin, 3].

Let 0 < x < M be a value. A random split value representation of x is a vector X = (u,
v) where u is randomly chosen from [0, M — 1] and v = (x — u) mod M. Thus Val(X)
= (u +v) mod M = x.

A commitment COMSV(X) to a vector X = (u, v) is a pair of commitments, one to
each component: COMSV(X) = (COM(K4, u), COM(K,, v)). Note that COMSV(X)
denotes commitment to a split-value vector representation of a value x, 0 < x < M,
while COM(K,u ) is a commitment to a value u, 0 <u < M.

If just one of the two coordinates u or v in a commitment to a random split value
representation X of a value x is opened in a proof process, then no information
about the value x is revealed.

We now begin to consider triplets (or later, tuples) of split-value representations.
Let X=(u1,v1),Y=(uz,v2),Z=(u3,v). Let X'= (u'y V'1),Y = (U2 V'2), 2 = (U3, V'3).

Clearly
Val(X) + Val(Y) + Val(z) = Val(X’) + Val(Y) + Val(Z') (1)
if and only if there exists a value t such that

X+Y+Z=X+Y +7 +(t, -t). (2)

Assume that a Prover has posted on a SBB six commitments, COMSV(X),
COMSV(Y), ..., COMSV(Z’), and claims that (1) holds. He can post a proof of this
claim as follows:

1. Prover posts and signs a value t.

2. By means of independent randomness (see Section 3), a random ce {1, 2}
is created and posted on the SBB.

3. If ¢ = 1, Prover opens the first commitments in COMSV(X), COMSV(Y),
COMSV(Z), COMSV(X’), COMSV(Y’), COMSV(Z’), revealing and posting uy,
U, ,usz, uy,u’y,u’s.



4. Similarly, if c = 2, Prover opens the second commitments.

5. A Verifier viewing the posted proof will check that the commitments were
correctly opened. If c = 1 the verifier will check and accept only if (u; +u, +
us) mod M = (u’y + U, + U3 +t) mod M. Similarly, if c = 2, now using —t.

Lemma. If (1) is false then the probability that the posted proof will be accepted
is <.

Proof. If the claim (1) is false then at least one of the equations mentioned in the
Bullet 5 above is false. The random choice of ¢ will reveal a false equation with
probability at least 2. Q.E.D.

2. Proving Equality of Arrays of Vote Values

In our mechanism votes are represented by triplets T = (X, Y, Z) and committed to
as COMT(T) = (COMSV(X), COMSV(Y), COMSV(Z)). By definition, Val(T) = (Val(X) +
Val(Y) + Val(Z)) mod M.

Assume that a Prover has posted in a SBB two arrays of commitments to triplet
representations of values:

COMT(T,), COMT(T,), ..., COMT(T,)
COMT(T’;), COMT(T’,), ..., COMT(T’,,) .
The Prover claims that Val(T;) = Val(T’;) for 1< j <n.

To post a proof of correctness on the SBB, the Prover posts the values ty, ..., t,
required for proving the claimed equalities.

Afterwards, employing independent randomness (see Section 3), n random values
¢je{l,2},1< j <n, are computed and posted.

Now a proof for each claimed equality Val(T;) = Val(T’;), 1 £ j < n, is created,
posted and can be verified along the lines in the above 3-5 and Proof Verification
given above.



Theorem 1. If more than k of the claimed n value equalities are false then the
probability of acceptance of the claim is at most (%) .

This theorem follows directly from the Lemma.

3. Randomness

The PS will require two types of randomness for preparing its posted proof of
correctness of posted tally results.

Internal randomness. As will be seen in Section 5, the PS will prepare and post
additional arrays of commitments to vector representations of the votes and
random permutations of these arrays. This will require randomness for the
creation of the commitments and of the permutations. The PS will use for these
tasks internally generated randomness.

Random challenges. Zero Knowledge Proofs (ZKP) involve random challenges. In
Interactive ZKPs the random challenges are created by a Verifier who, ideally,
uses physical generation of randomness.

We want Non-Interactive proofs of correctness which will be posted for general
verification. Thus the random challenges will be created by computing hash
functions on posted array data. This idea goes back to Fiat-Shamir. Strictly
speaking our proofs are not ZKP, but we do not go into the issue of theoretically
classifying them

To prevent the PS from privately creating data and extracting randomness until it
can cheat, the hash operation incorporates a seed that a trusted outside
committee prepares and hands over to the PS only after the posting. There are
various ways of implementing this creation of random challenges.

The above mode of course only creates pseudo-random challenges. In the
Theorems that follow we disregard this point and state the results as if truly
random challenges were employed.

4. Obfuscating and Shuffling



P11 has publicly posted, in order of the BLTids, the pairs for the X-components of
the n votes.

The Proof Server PS device P,; has the secret decryption key d;. It decrypts for
each Ballot component X the PKE(e;, K; || Ky ) part. Using the keys K;, K, the PS
opens COMSV(X) and computes Val(X) = x.

Now P;; has the sequence of X-components of votes: xy, ..., X, .

Similarly P,; computes vy,, ..., Y, and P3; computes z;, ..., z,. Here the vote in
Ballot; = (x; + y; + z;) mod M. Voter privacy is protected since at least one of the
three devices, say P, 1, is not gossipy .

Definition. We say that S’; = (x4, ¥'1, 1) is an obfuscated form of S, = (x4, 1, z1) if
(X'1+ Y1+ Z’1) mod M is equal to (x; + y; + z;) mod M --- that is, if S’y and S;
represent the same value.

Obfuscating: The method for Py, P, 1, P31 to obfuscate S; = (xy, y1 ,21) is to chose
three random values p4, g; ,r; in the range 0 to M-1, subject to (p; + g1 + r;) mod
M =0 and to compute x’; = (p; + x; ) mod M by P, ;, etc.

Shuffling: P, has now opened X'y, ..., X', P,1 has opened y’y, ..., y'n and similarly
for P3’1 .

Now Py, P, 1, P31 choose a random permutationm: {1, ..., n} > {1, ..., n}.

P11 securely sends to Py, the array ( X'nquy, ... , X'nn) ) Of obfuscated values, P,
securely sends to P, the array ( Y'x), - » Y'r(n) ), similarly for P33 and P3; .

Next P,,, P,,, P3, again obfuscate and shuffle their arrays, using a new random
permutation m; and transfer the resultto P;3, Py3, P33

Finally, P13, P23, P33 again obfuscate and shuffle so that P, 3 has the array (x"”5(1),
e » X" 5n) ), similarly for P, 3 and the array (y"”o(1), - » Y oin) ), and for P35 . Here o
denotes the permutation of the original order of the ballots into the present

arrays.



Maintenance of Voter Privacy: As long as no more than two of the nine devices P;;
leak out unintended data, there are at least one row and one column in the 3x3
array of devices P;; that do not contain an improper device.

This, combined with the obfuscation and shuffling from one column of devices to
the next and the final obfuscation and shuffling by the third column Py 3, P,3, P33
of devices, results in complete secrecy of votes by individual voters. This even if
the above output arrays of P, 3, P,3, P33 are made public and two devices of the
PS leak out all their data. We shall prove this statement following the next
remark. It is assumed about the Proof Server that the communication between
any two sub-devices is secure.

277

Remark. At the same time, if computations were properly done, then (x5 +
Y s) + 2" 51)) mod M = wgy(y) ,etc. l.e. from the output arrays of Py 3, P,3, P33 , the

o permutation of the votes w,, ..., w,, can be directly read off.

Proof of Statement: In first phase of obfuscation and shuffling going from the first
column Py, P21, P35 to the second column P, ,, P,,, P3,, obfuscating a typical S;
=(Xy,Y1,21)intoS; = (X"y, ¥'1, 2’1 ) by use of p;, q;, r1. Note that P, ; keeps x; and
X'y in its own memory. Similarly for P,;, P3; and their components of S; and §’; .

This implies that even though p;, q;, r; are known to all three of Pyq, P4, P33,
nothing is revealed about components/fragments of proper devices.

The same holds about obfuscation and shuffling going from the second column
P1,2/ lez, P3[2, to the third column P113, P213, P3,3.

Once the third column Py3, P,3, P33 is reached either it or one of the two
preceding columns do not contain any improper device. So the outputs posted by
the third column retain voter privacy.

5. Proof of Correctness

1224

The device P, ; creates random split value vector representations X", for Xq(;), 1
< i £n, and commitments COMSV(X"” ) for 1 < i < n. Similarly for P, 5 with the

y”,o(i) , and P3/3 Wlth the Z”’o(i) .
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Using the notation of Section 2, P, 3, P, 3, P35 together prepare and publicly post:
COMT(T4) = (COMSV(X"5), COMSV(Y” o)), COMSV(Z"5)), 1<i<n.  (3)

This process of obfuscation, shuffling and posting an array of the form (3) is
repeated by the PS 2m times, where as stated in the Overall Plan, m is chosen
according to the desired assurance of correctness. Each of these posted arrays is
of course created by use of a different permutation.

Cut and Choose. Now by use of randomness extracted from all the posted data
together with an independent random seed, m of the posted arrays (3) are
randomly chosen for a proof of value-consistency with the posted concealed
votes (see end of Introduction).

Each of these m chosen arrays (3) is rearranged by the Proof Server in the order of
of BLTids, hence in the order of the submitted-posted concealed ballots.

Now the randomness is used to open in each of the commitments in the posted
concealed ballots and the corresponding commitment in each of the m
rearranged arrays (3) and prove equality of values by the method of Section 2. By
Theorem 1, if even one of these m arrays differs from the ballot array by more
than k values then the probability of acceptance is < (1/2).

For brevity we omit the simple details of how P, 3, P,3, P33 compute and post the
pairs (tj, -t;), 1< i <nusedinthe proofs of value equality.

Now all the other m permuted arrays are opened and the values are revealed.
Only if all opened arrays are permutations of the same values is the proof of
correctness accepted.

Call a permuted array of values k-good if when re-arranged in the order of posted
concealed ballots it differs from the concealed ballot values in fewer than k
locations.

Theorem 2. The probability that the opened arrays (3) are permutations of the
same values but they are not k-good, i.e. the probability of accepting an
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announced tally result differing from the correct tally by more than k vote values
is at most

1/C(2m, m) +1/2% ~ sqrt(3.14 m)/2*™ +1/2"

where C(2m, m) denotes the binomial coefficient “choose m out of 2m”. We
postpone the proof to the full paper.

For the case of no more than 20 wrong votes we use 2m = 24 and the probability
of accepting a proof of correctness while there are more than 20 discrepancies is
less than 1.38/2%.

6. Countering Denial of Service Attacks (Device Failure)

It is relatively straightforward, using well-known secret-sharing methods, to
provide increased robustness against the possibility that one or more of the proof
server devices may fail. These methods allow construction of systems satisfying
specified robustness requirements in addition to voter privacy protection.

When failures may occur, then obfuscation is done by the method of proactive
secret sharing, rather than the method described in the example of the previous
sections.

For example, suppose we wish to protect against one device failure and one leaky
device; we'’ll use a PS with four rows and two columns. The votes are (4, 3)-
shared by the voter Tablet and the shares of each vote are securely sent to four
devices P[1, 1],..., P[4, 1] comprising the first column of the PS. With (4,3)-secret-
sharing each value is split into four shares, such that any three (but not any two)
suffice to reconstruct the value.

Every first-column proof server P[j, 1] (4, 3)-shares the value 0 among the 4
devices in the first column. Every P[j, 1] adds the received shares of 0 to its input
share. (This is done separately for each vote.) The first column devices shuffle
the obfuscated quadruples and every PJj, 1] sends its obfuscated share to P[j, 2].
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The second column of the PS obfuscates and shuffles, produces the results as
output.

In general, if at most f devices may fail (where f > 0) and at most / may be leaky,
then PS may have r rows and c columns, where r 2 f + [ + 2 (to protect votes from
leaking), use an (r, [+2) secret-sharing method, and choose ¢ >/ +1 (to protect the

shuffles). If f =0, then the number of rows and the number of columns need only
be [ +1, as in the example of the previous sections.

7. Time Requirements for Creation of Proof, Storage Requirements

Assume that the number n of ballots is 10°, the number of tablets is 10°, and that
we use 2m = 24. The following numbers are for a typical desktop computer or
laptop, which can execute 200 private-key operations (e.g. RSA 2048-bit) per
second or 8 million commitments (AES operations) per second. Assume that PS
has r=3 rows and c=3 columns.

Time to decrypt votes from tablets: This requires 10" private-key operations
(using a hybrid method) per first-column PS device, or about 50 seconds. It also
requires about 10° openings of pairs of commitments, taking under a second. The
50 seconds for the private-key operations is the major component of the running
time.

The last-column PS devices must prepare 24 arrays of length n with 6
commitments per vote. The running time required is about 18 seconds (six
seconds if the last-column processors do this in parallel). The time to create the
random permutations themselves is assumed to be negligible (at most a couple of
seconds).

If each commitment COM(u) is assumed to require 30 bytes, then the overall size
of the proof is about 25X2X3 X 30X10° bytes (4.5GB), about the size of a movie;
the proof can be downloaded on an typical internet connection in a few minutes
at most, and checked in a couple of minutes on a typical laptop.
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