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Abstract

We provide an overview of some of the security issues involved in
securely implementing Lalley and Weyl’s “Quadratic Voting” [37], and
suggest some possible implementation architectures. Our proposals blend
“end-to-end verifiable” voting methods with anonymous payments. We
also consider new refund rules for quadratic voting, such as a “lottery”
method.

1 Introduction

The problem of reliably implementing an election is ages-old, and has been
recognized at least since the use of the secret ballot in Ancient Greece and Rome.
An ideal voting system has a complex set of desiderata, and must uphold them
in a threat model where no one can be trusted: in general, neither voters, nor the
election authorities, nor the equipment used in the election can be considered
trustworthy by everyone with a stake in the outcome.

Four important properties of a voting system are verifiability, secrecy, ro-
bustness against false accusations, and usability. An ideal voting system should
produce a trail of evidence such that any observer can verify the accuracy of the
reported election outcome based on the evidence. Also, the system should be
robust against false accusations, meaning that if the election is indeed conducted
correctly, then it is not possible to produce (false) evidence that the election was
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not conducted correctly.1 Moreover, the vote of any individual should be secret :
this is an essential defense against vote selling and coercion. Finally, the system
should be able to be understood and used by all eligible voters.

These goals do not always mesh well together: indeed, the first two often
seem to be in direct opposition to each other. Researchers have studied election
integrity for decades, and numerous systems have been proposed, which draw
upon diverse mechanisms from cryptography, statistics, and systems security
and offer varying guarantees on verifiability and secrecy.

1.1 Quadratic voting

Lalley and Weyl’s “Quadratic Voting” (QV) [37] is a voting scheme for electing
one out of two candidates,2 which departs from the concept of “one person, one
vote” and instead allows each eligible voter to cast multiple votes for any single
candidate, thereby expressing the magnitude of his or her preference for the
selected candidate.3 Naturally, there is an associated cost (otherwise, everyone
would be incentivized to cast arbitrarily many votes for their candidate): voters
must pay to cast votes, and the pricing increases quadratically. That is, if
buying one vote costs 1 cent, then buying two votes costs 4 cents, buying three
votes costs 9 cents, and so on. After the election, the total revenue is reallocated
among the voters according to a refund rule: concretely, Lalley and Weyl suggest
that each voter get an equal share of the election revenue.

An attractive feature of quadratic voting is that it attains efficiency (in
the economic sense: a more efficient system has less potential to improve the
outcome according to a certain measure, i.e., it is closer to optimal by that mea-
sure). Namely, [37] shows that quadratic voting achieves optimal efficiency in
the sense that asympotically, the system’s utilitarian inefficiency tends to zero.
It turns out that quadratic voting also achieves Pareto efficiency (again, asym-
potically), which means that nobody can be made better off without making
someone else worse off. The efficiency of QV stems from the quadratic pricing,
which Lalley and Weyl show incentivizes voters to cast a number of votes which
honestly reflects how much they care about the issues being voted on. Lalley
and Weyl envision quadratic voting to be a potentially advantageous decision-
making mechanism for diverse settings; they give examples ranging from market
surveys to corporate governance to national political elections. We refer to their
paper [37] for further discussion and motivation.

Quadratic voting is interesting from a security viewpoint because it requires

1While this is an already-existing concept in the secure voting literature, it does not have
a widely agreed-upon name. As far as we know, this is the first use of the term “robustness
against false accusations” to describe this property.

2All expositions of QV of which we are aware focus solely on the two-candidate case.
Extending to many candidates may well be possible, but generalizing the analysis of [37] to
many candidates seems possibly non-trivial and the details have not been worked through. In
this work, we consider only the better-studied, two-candidate case.

3A somewhat similar voting scheme is range voting [2]. In range voting, votes can have
different magnitudes. Unlike QV, however, range voting does not assign a cost per vote (and
is mainly considered useful in the many-candidate setting).
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integration of secure voting and payments: two functionalities that are each
quite challenging to implement securely. In this paper, we provide an overview
of some of the security issues involved in implementing quadratic voting, and
propose some potential implementation architectures.

Collusion Quadratic voting as presented in [37] is inherently susceptible to
collusion between the voters: a group of voters supporting the same candidate
who pool their money evenly amongst themselves will be able to effectively
buy votes at a cheaper rate than voters who do not collude. This means that
voters who have strong preferences will be incentivized to pay their friends (and
perhaps also strangers) to cast votes for their favored candidate.

This issue is pointed out but unaddressed by [37]. A more recent work by
Weyl [54] analyzes the robustness of QV against variations in voter behavior,
including collusion, but does not eliminate the problem.

Within the scope of this work, we study how to securely implement the
quadratic voting scheme as presented in [37], and do not address the collusion
problem. We remark, however, that collusion is a real potential security concern
which we think it would be important to address in a deployment of QV in any
high-stakes setting where adversarial behavior by voters is possible or likely.

2 Background on secure voting and payments

2.1 Secure voting

Voting is, of course, central to democracy.
Yet implementing voting securely is challenging, for many reasons. First,

the secret ballot makes typical security methods inapplicable. For example,
the system cannot give a voter a receipt showing how she voted, lest she use
that to sell her vote. Second, in a typical election there is really no “trusted
party”; the integrity of the election depends on having many eyes on each step
of the process. Third, the function of an election is more demanding than a
naive observer might expect. A good election system must not only produce
the correct outcome, but also provide convincing evidence that the outcome is
correct, sufficient to convince a skeptical losing candidate that he lost fair and
square. These requirements are in tension with each other; it is difficult (but
not impossible) to satisfy them all simultaneously.

There is a large literature on election methods and technology. Jones and
Simons [34] provide an overview of recent attempts at applying technological
innovation to voting, not always successfully.

Many recent proposals fall within the camp of “end-to-end verifiable (E2E)
voting”. In an E2E method, verifiability is provided for each of the three basic
properties: “cast as intended”, “collected as cast”, and “tallied as collected”.
The Overseas Vote Foundation recently issued a report [28] that surveys end-
to-end verifiable voting technology and its potential applicability to voting over
the internet. Two notable end-to-end verifiable voting implementation projects
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are Scantegrity [23] and STAR-Vote [12]. Another one is Helios [6], which is
especially designed for remote voting over the internet in low-stakes settings.4

In this paper we follow this trend, and describe E2E voting methods for
quadratic voting that are modelled after the STAR-Vote design (in the polling-
site setting) and the Helios design (for remote voting in low-stakes settings).

2.2 Secure payments

“Secure payments” is an umbrella term that spans a vast range of concepts,
from cash (e.g., preventing counterfeits) to traditional banking (e.g., payments
between financial institutions) to the more recent technologies underlying credit
cards (e.g., chip and PIN), online purchases, and cryptocurrencies (e.g., Bitcoin).
Within the scope of this paper, we are interested in only a select few aspects
of payments, which are directly relevant to constructing a verifiable and secret
quadratic voting system. The properties that we require of the payment scheme
are discussed in Section 3.1.

3 Implementing quadratic voting

Lalley and Weyl envision quadratic voting to be a useful decision-making mech-
anism for diverse settings, from small-scale polls and surveys to potentially na-
tionwide elections. These different settings have very different security require-
ments. In this paper, we consider two broad categories of collective decision-
making scenarios.

1. Elections, where eligibility to vote is tied to a “real-world” identity (such
as a presidential election, where eligibility is determined by citizenship).
For elections, we consider the “polling place” setting, where participants
must come to a designated physical venue in order to vote. In this setting,
we assume that payments are made in cash.

2. Surveys, where eligibility is linked to a virtual identity (e.g. an email
address). In this setting, eligibility to vote can be checked digitally online,
and the stakes of the outcome tend to be lower, so we consider a fully
online voting process. As we shall discuss, a main interesting challenge
in this case is to implement electronic payments in such a way that the
payment amounts cannot be traced back to individual identities.

At a high level, the steps involved in a secure implementation of quadratic
voting are as follows.

1. Identity check: Only voters who can demonstrate their eligibility should
be allowed to vote.

4Adida, the author of Helios, discourages the use of Helios for high-stakes elections since re-
mote voting using currently available technology is inherently risky in scenarios where strongly
adversarial behavior such as coercion and/or vote-buying are likely to occur [6].

4



2. Create a vote: Eligible voters should have a method of submitting payment
for and creating a ballot indicating their desired number of votes for their
chosen candidate.

3. Cast a vote: Completed ballots should be submitted to the election au-
thority. Only ballots created by eligible voters who have fully paid for
their votes are considered to be valid submissions.

4. Tally votes: After all voters have submitted their votes, the election au-
thority should be able to determine the outcome of the election and an-
nounce it.

5. Sum payments: The election authority should be able to determine the
total amount of money paid for votes in the election, and announce it.

6. Audit: An auditing procedure is undertaken by voters and/or election
officials and/or third parties to check that the election was conducted
properly and the outcome and payment total were correctly computed.

7. Reimbursements: Each person who voted in the election should be paid
the appropriate refund from the election revenue.

3.1 Verifiability, robustness against false accusations, and
secrecy for QV

Each of the verifiability, robustness against false accusations, and secrecy re-
quirements for traditional voting schemes need to be augmented with additional
requirements for quadratic voting, due to the payments aspect.

3.1.1 Verifiability

The traditional requirement of verifiability is that the outcome of an election
should be able to be verified by any independent observer. The natural extension
of verifiability to the context of quadratic voting requires additionally that the
total election revenue (and the fact that the revenue was redistributed to the
voters as required) should be able to be verified by any independent observer.
Note that the announced outcome of the election may be just the winner, or
(more usually) the total number of votes for each option.

3.1.2 Robustness against false accusations

The usual requirement of robustness against false accusations is that if the
election was indeed conducted correctly, no party should be able to produce false
evidence that any voter’s vote was incorrectly counted. For QV, this requirement
is augmented to also require that no party can produce false evidence that any
voter was incorrectly reimbursed.
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3.1.3 Secrecy

Secrecy requires that no individual can convince someone else (beyond doubt)
of the vote he cast. There are some situations where this is unavoidable: for
example, in the case of a unanimous vote, it can be inferred which candidate
any individual voter voted for. Therefore, we technically require that no indi-
vidual can convince someone of the vote he/she cast, beyond what can already be
inferred from the publicly announced outcome of the election: i.e., from the final
vote tally and the total amount of election revenue. This requirement should
be satisfied even if the voter herself is trying to convince someone truthfully of
the vote she cast: this is important in order to avoid coercion and vote-buying.

In traditional voting systems, the secret information is just who/what the
voter voted for. The natural extension of secrecy to quadratic voting requires
that the magnitude of any individual’s vote must additionally be kept secret.
In fact, to prevent coercion and vote-buying in QV, we require an even stronger
condition: that even the set of magnitudes of all votes cast must not be revealed.

To see why this requirement is needed, consider a coercer who tells a voter
to vote a specific number of votes (say, $42.13 worth) for a particular candidate.
The coercer will “check” whether the voter has complied with his demand, by
checking the list of amounts voted to make sure the amount $42.13 is there. As
long as there is a good chance that nobody else will vote that exact amount, then
the voter will be compelled to vote as the coercer says, since non-compliance is
reasonably likely to be detected by the coercer. We remark that this type of
attack is related to the pattern voting attack which has been discussed in the
standard voting literature [46].

Note that the coercer cannot force a voter to vote for a particular candidate
using this method, as the list does not reveal which candidate was voted for.
Nonetheless, if the coercer chooses voters whose preference he knows matches his
own (but would vote less than $42.13 if not coerced), then he can be reasonably
sure that the voters indeed voted for the correct candidate. This means that for
example, if the coercer successfully coerces two voters in this way – and even
if he fully reimburses the $42.13 incurred by each – he has effectively bought
2
√

4213 votes at the price of $84.26, rather than (2
√

4213)2 = $168.52 as it
should rightfully cost by quadratic pricing.

4 Implementation of in-person voting

In this section, we propose an implementation of quadratic voting where eligibil-
ity to vote is associated with a real-world identity. We remark that we assume a
payment system which is discrete-valued, like every existing currency, whereas
Lalley and Weyl’s analysis models money as continuous (real-valued). Provided
that the discrete-valued payments have sufficiently fine granularity, this should
be a reasonable approximation to the real-valued case.

In this work, we refer to currency in dollars and cents, and assume that one
vote costs one cent. We write n to denote the total number of voters who vote
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in an election (note that this is not necessarily equal to the number of eligible
voters), and [n] = {1, . . . , n} denotes the set of all voters who voted.

4.1 Physical implementation with wax

Consider the following toy implementation of quadratic voting, which uses quan-
tities of wax to represent votes: wax has the useful physical property that chunks
of it can be melted together and this irreversibly deletes all information about
the sizes of the original chunks.

1. Identity check: A voter (call her Alice) walks into the polling place and
presents her ID document to a designated poll worker (call him Bob).
Bob has a list of the names and addresses of all voters who are eligible to
vote at this polling place. If he verifies that Alice’s ID document is valid,
then Bob crosses Alice’s name off the list and gives Alice a “voter token”5

which indicates that she is authorized to vote.

2. Create a vote: Alice takes her token and approaches a different poll worker
(call him Charlie) who is in charge of creating votes. Alice gives Charlie
her voter token, tells him the number v of votes she would like to buy,
and gives Charlie v2 in cash. Charlie places the cash in a lock-box6 (while
Alice watches) and gives Alice an embossed wax block7 of mass v.

3. Cast a vote: Alice enters a curtained voting area where there are two
large opaque containers, each labeled with one candidate’s name. Each
container has an opening on the top8. To place her vote for a candidate,
Alice drops her wax block into the corresponding container.

4. Tally votes: In order to count the votes, the total mass of wax in each
container is weighed. Before the containers are opened, they must be
heated so that the wax melts and becomes homogeneous.

5. Sum payments: In order to sum the payments, the lock-box is opened and
the cash is counted. The opening and counting process should be closely
monitored by having many people present, and perhaps also being filmed
and shown on television.

5The voter token should be hard to forge; e.g. it could be a special kind of coin minted
specially for this election.

6The lock-box should be thought of as a “piggy bank” with a small opening to insert
money, from which it is physically impossible to remove money unless the box is unlocked.

7The wax block should be embossed with a hard-to-forge pattern specific to this elec-
tion. Also, note that the wax need not be a monolithic block. For practical purposes, since
we assume discrete money, it would likely be more manageable to have wax “coins” in set
denominations, e.g. a 1-gram coin, 4-gram coin, 9-gram coin, etc.

8In order to ensure that only valid wax blocks can enter the containers, the opening of the
container should actually be protected by a box which mechanically checks whether the wax
block has the correct embossing, and only drops it into the container if the check is passed.
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6. Audit: In this toy example, there is no separate auditing step: its purpose
is served by the public monitoring of the tallying process for votes and
payments, described above.

7. Reimbursements: Each person who voted in the election (i.e. each person
who is crossed off of Bob’s list) is mailed a check for the amount of V/n
where V is the election revenue and n is the total number of voters.

Verifiability and robustness against false accusations The above-described
voting scheme’s verifiability and robustness against false accusations follow from
the public monitoring of the tallying process for votes and payments, and the
fact that from the total amount of election revenue, each voter can check that
his/her reimbursement check is for the correct amount. (We assume that voters
cannot forge reimbursement checks for incorrect amounts.)

Secrecy The secrecy of this voting scheme follows from:

1. The special physical property of wax that we highlighted at the beginning
of the section: namely, that once the wax chunks are melted together in
the “Tally votes” step, the sizes of the wax chunks are irrecoverably lost,
and thus only the total mass can be known since the wax containers are
opened only after the melting occurs.

2. The opacity and physical security of the wax containers and the lock-box,
i.e., the facts that

(a) nobody can see inside them before they are opened; and

(b) a voter who physically places his/her wax block into the container,
or watches the poll worker physically place an amount of cash into
the lock-box, can be sure that the wax block (or cash) indeed entered
the container and will stay there until the container is opened; and

(c) cash is anonymous, so when the lock-box is opened, an observer can-
not tell what are the amounts contributed by any individual voters.

4.2 Cryptographic tools

In order to securely implement quadratic voting using cryptographic (rather
than physical, wax-based) guarantees, we need to introduce some cryptographic
tools. The descriptions we give here are relatively informal; for more detailed,
rigorous definitions, we suggest consulting any standard textbook on cryptogra-
phy (such as “Introduction to Modern Cryptography” by Katz and Lindell [35]).

4.2.1 Encryption

Secret-key encryption The simplest type of encryption is secret-key en-
cryption. A secret-key encryption scheme SKE consists of three algorithms:
SKE.Gen, SKE.Enc, and SKE.Dec.
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• The key generation algorithm SKE.Gen takes as input a “security param-
eter” indicating the level of security desired, and outputs a secret key k.

• The encryption algorithm SKE.Enc, when given a secret key k and a mes-
sage m as input, outputs a ciphertext c. To someone who does not know
the secret key k, the ciphertext c reveals no information about the under-
lying message m.

• The decryption algorithm SKE.Dec allows an authorized recipient who does
know the secret key to recover the message: on input k and c, SKE.Dec
outputs the original message m.

Public-key encryption A more advanced type of encryption is public-key
encryption. A public-key encryption scheme PKE also consists of three algo-
rithms: PKE.Gen, PKE.Enc, and PKE.Dec.

• The key generation algorithm PKE.Gen takes as input a “security param-
eter” indicating the level of security desired, and outputs a pair of keys
(k,K). As before, k is the secret key; and K is a public key which can be
made publicly known.

• The encryption algorithm PKE.Enc, when given a public key K and a
message m as input, outputs a ciphertext c. To someone who does not
know the secret key k, the ciphertext c reveals no information about the
underlying message m.

• The decryption algorithm PKE.Dec allows an authorized recipient who
does know the secret key to recover the message: on input k and c,
PKE.Dec outputs the original message m.

In this work, we are only interested in public-key encryption.
Note that an important feature of secure encryption schemes is that the

encryption algorithm is randomized. This means that two encryptions of the
same message are not the same.9 The importance of randomized encryption is
well illustrated by settings such as voting, where there are only a few candidates
to choose from: if two encryptions of the same message resulted in the same
ciphertext, then an attacker could figure out people’s votes by just running the
encryption algorithm on all the possible options, and comparing!

4.2.2 Homomorphic encryption

Additively homomorphic encryption is a special type of encryption which allows
someone who is given two ciphertexts

c = PKE.Enc(K,m) and c′ = PKE.Enc(K,m′),

9In fact, the formal security requirement says that two encryptions of the same message
must be indistinguishable from two encryptions of totally different messages.
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but does not know the secret key k or the messages m and m′, to compute a
new ciphertext c′′ which encrypts the sum m+m′ of the two original messages.
That is, PKE.Dec(k, c′′) = m + m′. An example of a well-known public-key
encryption scheme which has this property is the Paillier scheme, which has
been considered for voting applications for exactly this reason [10, 42, 25].10

In the context of voting, this is a very useful feature, since it means that even
if individual votes are encrypted, it is possible to compute a ciphertext which
encrypts the sum of all votes without decrypting the individual votes. This is
important to preserve the secrecy of individuals’ votes while still ensuring that
the election outcome is correctly computed.

For quadratic voting, we would like something slightly more than additively
homomorphic encryption: namely, in addition, to adding up the votes v1, . . . , vn
of the voters in order to compute the election outcome, we would like to add up
the payments v21 , . . . , v

2
n of the voters in order to compute the election revenue.

In the terminology of the encryption scheme, it would suffice if someone who is
given two ciphertexts

c = PKE.Enc(K,m) and c′ = PKE.Enc(K,m′),

but does not know the secret key k or the messages m and m′, has the ability
to compute a new ciphertext c′′ which encrypts the product m×m′ of the two
original messages. With such an encryption scheme, if we are given encryptions

c1 = PKE.Enc(K, v1), . . . , cn = PKE.Enc(K, vn)

of the votes v1, . . . , vn, we can use the ciphertext multiplication procedure to
compute c′1, . . . , c

′
n which are encryptions of v21 , . . . , v

2
n respectively, then use the

ciphertext addition procedure on the new ciphertexts c′1, . . . , c
′
n to compute a

final ciphertext which encrypts the sum
∑
i∈[n] v

2
i of payment amounts.

Fortunately, efficient encryption schemes with exactly this property are known:
we suggest the Boneh-Goh-Nissim encryption scheme [17].11 Note that the pre-
sentation we have given here is somewhat simplified; we refer the interested
reader to the original paper [17] for full details of the specific suggested en-
cryption scheme. More generally, we refer to [27, 52, 30, 40] for a survey of
homomorphic encryption techniques and definitions.12

10The standard definition of additively homomorphic encryption actually requires that the
described property holds for adding up not only two ciphertexts, but any (polynomial) number
of ciphertexts. Note that in fact, we need this more general property in order to use additively
homomorphic encryption for tallying (more than two) votes.

11We remark that in fact, encryption schemes with an even stronger property are known:
fully homomorphic encryption schemes allow arbitrary multiplications and additions of ci-
phertexts, whereas the [17] scheme allows arbitrary additions but only one multiplication per
ciphertext. However, the known constructions of fully homomorphic encryption are too inef-
ficient to be practical. We suggest the [17] scheme since it has the required properties for QV
tallying (only one multiplication per ciphertext is needed, for the squaring), and – unlike the
fully homomorphic schemes – it is efficient enough for practical use.

12The first reference [27] is self-designated “for non-specialists”, the next two [52, 30] are
more recent and somewhat more technical surveys written by cryptographers at the forefront of
theoretical developments in the field, and the last reference offers a perspective on practically
deploying homomorphic encryption.
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4.2.3 Threshold decryption

In the encryption schemes described so far, we assumed there was an authorized
recipient in possession of the secret key, who would be able to decrypt cipher-
texts. In some situations, it may be desirable that no individual entity has the
power to decrypt ciphertexts alone. For example, there may be a set of people
who have to collaborate in order to decrypt ciphertexts.

A threshold decryption scheme provides a method of sharing a decryption
key among m parties, such that for some threshold t ≤ m, any t of the parties
together have the power to decrypt, but any subset of fewer than t parties cannot
decrypt. The first construction of such a scheme was given by Shamir in 1979
[51]. We will use t such that 1 < t < m.

Why 1 < t < n? If t = n, then if even one of the people in the set is malicious
or unavailable, the others will not be able to decrypt. We would like our scheme
to be robust against such failures, so we set t lower than n. On the other hand,
if t parties are collude maliciously, then they can decrypt ciphertexts (that they
should not be able to decrypt): we set t reasonably large in order to reduce the
probability of such a malicious collusion.

4.2.4 Digital signatures

For traditional handwritten signatures that are used to sign documents, there
are three main desirable properties:

1. a signature should be unique to an individual person,

2. anyone should be able to look at a genuine signature on a document and
be convinced of (a) its authenticity and (b) the fact that it is indeed a
signature on this particular document,13

3. and yet it should be hard for other people to forge.

Digital signatures are the electronic equivalent of traditional handwritten
signatures. A digital signature scheme consists of three algorithms: Gen, Sign,
and Verify.

• The key generation algorithm Gen takes as input a “security parameter”
indicating the level of security desired, and outputs a pair of keys (k,K).
Here, k is the signing key which should be kept secret, and K is the
verification key which can be made publicly known.

• The signing algorithm Sign, when given a signing key k and a message m
as input, outputs a signature σ.

13In the case of handwritten signatures, the latter property is effectively enforced by having
the signature physically bound to the document, i.e., on the same piece of paper.
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• The verification algorithm Verify allows anyone who knows the public ver-
ification key K to check the validity of the signature: on input K, m, and
σ, Verify outputs 1 if σ is indeed a signature on m produced using k, and
outputs 0 otherwise.

An important difference between digital signatures and handwritten signa-
tures is that digital signatures are typically randomized, and they depend on
the message being signed. In particular, while copying over a handwritten sig-
nature from one document to another might make a convincing forgery if done
skilfully, a similar approach cannot work with digital signature because a valid
signature for one document is completely different from a valid signature for
another document. This is a feature that makes digital signatures much harder
to forge!

4.2.5 Zero-knowledge proofs

A proof is an object which convinces observers of the validity of a certain math-
ematical statement. Proofs can be interactive: a proof protocol is an interaction
between two entities, a prover (Peggy) and a verifier (Victor), at the end of
which the verifier outputs either “accept” or “reject” (depending on whether
Peggy’s actions convinced him of the validity of the specified mathematical
statement).

Sometimes, it is desirable for Peggy that Victor learns whether or not a
mathematical statement is true, but does not learn any other information. For
example, suppose Peggy wants to prove to Victor that there are two prime
numbers p, q such that pq = 75359. A simple way to prove it would be for
Peggy to tell Victor the primes p and q: then, Victor can check for himself that
p and q are both prime, and that pq = 75359. However, this method reveals
to Victor extra information (namely, the actual values of p and q) beyond the
truth of the statement

∃ primes p, q such that pq = 75359 .

A proof is said to be zero-knowledge if it reveals no information other than
the validity of the statement that it is proving.

4.3 Cryptographic implementation

The scheme proposed below closely follows the STAR-Vote voting system [12],
with some adaptations for the QV setting. We remark that our design is not
specific to STAR-Vote, and there are several other voting schemes which use
homomorphic encryption for vote tallying, which could be adapted similarly to
support QV.

As in STAR-Vote, we assume the polling place has the following physical
setup: there is a Check-In Station, a Judge Station, several Ballot Machines
(each protected by a privacy-preserving screen), and a Ballot Box. Each Ballot
Machine contains a secret signing key (following the approach of [15]).
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We assume a homomorphic encryption scheme is used, and there is a publicly
known public key K∗ using which all votes are to be encrypted. The correspond-
ing decryption key is shared, using a k-out-of-m threshold decryption scheme,
between m election trustees.

Ballot Machine functionality In STAR-Vote, the Ballot Machines have an
interface (such as a touchscreen) using which voters can input information, a bal-
lot printer which prints human-readable paper ballots, and a receipt printer.14

For the QV setting, we additionally require the Ballot Machines to have a slot
that accepts cash (like an Automatic Teller Machine (ATM) which accepts cash
deposits), and the ability to count and check authenticity of cash inputted via
this slot. Each Ballot Machine has an attached lock-box for storing the cash,
which can only be opened by the election trustees.

We require cash payments (and do not accept checks or debit cards) primarily
for the purpose of anonymity: that is, so that payment amounts cannot be
traced back to the individual who made the payment (even if the government
issues a subpoena to the bank). Another reason to avoid checks and credit card
payments is because these payments methods do not entail immediate transfer
of funds: bouncing checks and/or defaults on credit card payments would be
very tricky or impossible to deal with.

We now describe the steps that would be taken by a voter in our system.

Step 1. Identity check A voter (call her Alice) enters the polling place,
goes to the Check-In Station, and identifies herself to a poll worker Bob. Bob
checks that Alice is on the list of registered/eligible voters, and if so, Bob gives
Alice an anonymous token which represents that she is authorized to vote.

Alice takes her token to the Judge Station and gives it to another poll worker
Carol. Carol gives Alice a piece of paper with a 5-digit code on it.

Step 2. Create a vote Alice chooses a Ballot Machine at which to create
her ballot. First, she inputs her 5-digit code to the Ballot Machine, which
identifies her as a valid voter (but does not reveal her actual identity). Then,
she inputs her vote to the Ballot Machine by indicating her preferred candidate
and number of votes v. She is presented with a review screen so that she can
check her selections before producing a paper record.

When she is ready, Alice instructs the Ballot Machine to print the paper
record of her vote. The Ballot Machine then prints two items:

1. a paper ballot containing a human-readable description of Alice’s vote and
a random serial number, and

2. a take-home receipt that shows the voting terminal used, the time of the
vote, and an encryption of her vote15 using public key K∗.

14The printing of ballots and receipts could potentially be done by the same printing device.
15Note that in QV, there are two candidates to choose between. We represent a vote of
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The paper ballot is printed face-up so that Alice can read it, and includes both
values v and v2. The receipt, however, must be face-down and inaccessible
to Alice:16 this could be achieved by printing it behind a glass barrier, for
example.

Optional step. Challenge vote Once the Ballot Machine has produced the
print-outs, Alice can choose to go ahead and cast her vote, or to challenge the
printed vote. This follows the “cast-or-challenge” paradigm for voter-initiated
audits, originally suggested by Benaloh [15]. Alice might choose the latter option
because of an input error (or change of mind), or because she wants to check
that the Ballot Machine indeed correctly printed her selected vote (rather than
malfunctioning or perhaps maliciously recording the wrong vote). If she chooses
to challenge the vote, the Ballot Machine appends to Alice’s receipt a proof that
the encryption was correctly formed. (Such a proof can only be produced if the
encryption really was correctly formed; otherwise, the machine will be “caught
cheating”.) Then, the Ballot Machine outputs the two print-outs to Alice, and
allows her to start the vote creation process again from scratch.

Step 3. Cast a vote If Alice decides to cast her vote, then the Ballot Machine
prompts her to insert v2 in cash into the payment slot. Before continuing, Alice
should check that the requested amount of money is equal to the value v2 which
is printed on her paper ballot.17

Once she inserts the appropriate amount of cash,18 the Ballot Machine pro-
duces a digital signature on the encrypted vote that has been printed on the
receipt. The Ballot Machine appends the digital signature to the receipt, and
outputs the printed ballot and receipt to Alice.19 To finalize the casting of her
vote, Alice must take her paper ballot and put it in the Ballot Box. The Ballot
Box has a scanner that can read the serial number off the paper ballots, and
communicates the serial numbers of cast paper ballots to the Judge Station so
that the Judge Station can keep a record of which electronic (encrypted) ballots
to include in the tally. An electronic ballot will not be included in the tally
unless its corresponding paper ballot has been deposited in the Ballot Box.

magnitude m for candidate 1 by the number m, and we represent a vote of magnitude m for
candidate 2 by the number −m.

16This requirement is to prevent some subtle coercion attacks which are discussed in [15],
which we will not detail here.

17If not, she should abort and report the machine as malfunctioning. If Alice is able to
compute squares, she should also check that the requested amount of money is indeed the
square of the number of votes she decided to cast.

18Practically speaking, we would like the Ballot Machines to be kept well-stocked with
change so that Alice can be given change if she doesn’t have exactly the right amount. How-
ever, opening and closing the lock-box of the machine during the election is a security concern.
Hopefully, it would be possible and sufficient to pre-load each machine with an ample stock
of change before the election starts, clearly record the amount that was pre-loaded into each
machine, and subtract these amounts from the total when the cash is eventually counted.

19Note that the receipts for spoilt ballots are not digitally signed by the Ballot Machine, so
that Alice cannot claim falsely that a spoilt ballot was the real vote that she cast.
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The encryption of each vote cast will be posted on a public Vote Bulletin
Board (e.g. a website maintained by the election organizers), along with the
voter’s name.20

After placing her paper ballot in the Ballot Box, Alice goes home.

Step 4. Tally votes After all votes have been cast, it is time to tally them.
Since the encryptions have been made in a homomorphic encryption scheme, we
will use the homomorphic ciphertext addition method to compute a ciphertext c∗

encrypting the sum v∗ =
∑
i∈[n] vi of all the cast votes. Note that any observer

can compute the ciphertext c∗ for himself, based on the Vote Bulletin Board.
The sign of the sum v∗ (i.e. whether it is positive or negative) corresponds to
the election outcome.

Finally, the election trustees collaborate to decrypt the ciphertext c∗ to
reveal the tally v∗. They publish v∗, along with a zero-knowledge proof that v∗

is indeed the correct decryption of c∗.21

Step 5. Sum payments In addition, the sum of payments must be tal-
lied. We make use of the homomorphic encryption scheme again, to compute
a ciphertext ĉ encrypting the sum v̂ =

∑
i∈[n] v

2
i of the squares of all the cast

votes. Again, note that any observer can compute ĉ for himself, based on the
Vote Bulletin Board. As above, the election trustees collaborate to decrypt the
ciphertext ĉ to reveal the election revenue v̂. They publish v̂, along with a
zero-knowledge proof that v̂ is indeed the correct decryption of ĉ.

Additionally, the lock-boxes of all the Ballot Machines are unlocked by the
election trustees in a publicly observable way (e.g. on television), and the money
in the lock-boxes is counted under public observation. The total amount of
money in the lock-boxes should be at least v̂.22 If the amount of cash in the
lock-boxes is less than v̂, this is evidence that some money was mis-handled
during the election!

Step 6. Audit For some time-period after the election outcome and rev-
enue are announced, voters and/or third parties and/or election officials are en-
couraged to check the results for themselves to make sure that everything was
properly done. (For example, by checking the values c∗ and ĉ were computed
correctly as described above, checking the validity of the decryption proofs of

20This means that voters can, if they wish, check that their vote is recorded correctly on
the bulletin board, by comparing to their paper receipt. Note that the public posting of these
encryptions does not compromise ballot secrecy, since without the secret key, no information
about the values of the votes is revealed.

21It is very important that the proof is zero-knowledge: in particular, seeing the proof does
not enable observers to decrypt any ciphertexts other than c∗.

22Note that the amount of money may be more than v̂, if some voters finalized and paid for
their votes on the Ballot Machine, but then did not deposit their paper ballots in the Ballot
Box, thus disqualifying their vote from being included in the tally. The phenomenon of voters
leaving the polling place having only partially completed the voting process is known more
generally as the “fleeing voter problem”.
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the election trustees, and/or (in the case of individual voters) checking that the
votes were posted on the bulletin board match the votes on the paper receipts.)

If the audit fails, then the party which initiated the audit should publicly
announce the failure. Then, everyone will all know that there was an error in the
election procedure. The cause may be unknown: for example, it could be due to
human error, software bugs, or a malicious attack. The election officials should
have a prepared procedure for the case that the audit fails, which is appropriate
to the context of the particular election; but this is beyond the scope of this
paper.

Step 7. Reimbursements Each person who voted in the election (i.e. each
person who is crossed off of Bob’s list) is mailed a check for the amount of v̂/n
where v̂ is the election revenue (as above) and n is the total number of voters.

Verifiability The verifiability of this voting scheme follows from the following
properties of the construction:

1. Each voter can have confidence that with high probability, his/her vote
was correctly encrypted, since he/she has the option of challenging en-
crypted votes to make sure they were computed correctly.

2. Each voter can check that a copy of his/her vote encryption is correctly
recorded on the bulletin board.

3. Any observer can check that the tallying of the votes which are on the
bulletin board – and the tallying of the corresponding payment amounts
– were done correctly, because

(a) anyone can compute the ciphertext of the final tally for themselves,
just from the bulletin board; and

(b) the election trustees are required to provide a proof that they de-
crypted that ciphertext correctly. i

4. The storage and final counting of cash payments is publicly monitored,
and can be checked (by any observer) against expected amount of cash
based on the homomorphic tallying of squares of vote amounts.

5. From the total amount of election revenue, anyone can compute the re-
imbursement due to each voter, and each voter can check that his/her
reimbursement check is for the correct amount.

From the above properties, it is reasonable to conclude that as long as suf-
ficiently many23 voters perform audits, the probability that an error in the
election process is detected by an audit is overwhelming. Note that the depen-
dence on the fraction of voters who perform audits is inherent to any audit-based
voting scheme.

23Technically, for this implication to hold, the set of voters that audit needs to be not only
sufficiently large, but also random (or at least, unpredictable to an adversary).
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Robustness against false accusations This voting scheme’s robustness
against false accusations follows from:

1. The security of the digital signature scheme used by the Ballot Machines
to sign the encrypted votes, which means that the authenticity of the votes
listed on the bulletin board can be checked by any observer (by checking
the validity of the signatures). In particular, if the Ballot Machines work
correctly, no party can create incorrectly-encrypted votes and convincingly
use them as evidence that the Ballot Machines did not work correctly, since
this party will not be able to forge the Ballot Machine’s digital signature.

2. Our assumption that reimbursement checks cannot be forged.

Secrecy The secrecy of this voting scheme follows from:

1. The security of the encryption scheme, which means that an observer of
the bulletin board learns no information about the votes which were cast.24

2. The opacity and physical security of the lock-box, i.e.,

(a) nobody can see inside it before it is opened; and

(b) a voter who watches the poll worker physically place an amount of
cash into the lock-box can be sure that that cash indeed entered the
lock-box and will stay there until the lock-box is opened.

3. The anonymity of cash, i.e., the property that when the lock-box is opened,
an observer cannot tell what are the amounts contributed by any individ-
ual voters.

A remark about poll-site ATMs While it would be very convenient for
voters to have cash withdrawal machines available at the polling site (so that
they can withdraw cash on the spot, and use it to vote), we strongly recommend
against this as it would introduce a number of security vulnerabilities.

The record of withdrawal amounts from the cash withdrawal machines at
the polling site would give a good indication of voters’ payment amounts, which
is a security concern (even when not linked to voters’ identities), as discussed
in Section 3.1. This makes the cash withdrawal machines a prime target for
attacks/surveillance. Moreover, banks that see that their customers have with-
drawn from a polling-site withdrawal machine could infer approximately how
many votes that customer cast.25

24We believe that the standard security definition for homomorphic encryption would need
further elaboration to accommodate the specific requirements for this system, which we do
not detail here. However, we believe that the BGN cryptosystem [17] satisfies the enhanced
requirements.

25Unless the customer deliberately takes precautions to prevent this, e.g. by withdrawing
much more cash than they need for voting. Even if such precautions are taken, however, some
information can be inferred about the payment amount (e.g. that it was probably less than
or equal to the withdrawn amount). Moreover, we should not expect average users to take
such precautions.

17



5 Implementation of electronic surveys

We now turn to the setting of surveys, where eligibility to participate is linked
to a virtual identity (e.g. an email address). In this setting, we consider the
problem of implementing a QV system digitally and entirely over a computer
network such as the Internet. An example application could be market surveys.

5.1 Election/survey systems

Prior work has proposed auditable, anonymous election/survey systems which
are very suitable for settings where there is a low risk of coercion and voter
eligibility is linked to virtual identities.

Helios The Helios voting system [6] has been available online for the past
few years, and has been used in practice in low-stakes elections (e.g. to elect
members of professional societies). The Helios system, like STAR-Vote, is based
on tallying encrypted votes using an additively homomorphic encryption scheme.
For conducting electronic QV surveys, we suggest using Helios with the BGN
encryption scheme described in Section 4.2.2. This allows for secrecy-preserving
tallying not only of the encrypted votes v1, . . . , vn themselves, but also of the
payment amounts v21 , . . . , v

2
n.26 In this section, we henceforth write “Helios” to

mean “Helios instantiated with the BGN encryption scheme”.

Importance of verifiability Recently, a system for conducting anonymous
online surveys (called ANONIZE) has been proposed [33], which has the ad-
vantage of an easier (non-interactive) vote-casting procedure, at the expense of
voter verifiability of the outcome. There are some settings in which the outcome
of the survey need not be voter verifiable (or perhaps it is not even announced
to voters), such as some market surveys, and it seems that ANONIZE was de-
signed for such settings. However, in QV, the total amount of payments must
always be verifiable by participants (otherwise, they cannot be certain that they
have received their rightful refund), even if the outcome need not be verifiable.
Thus, systems like ANONIZE are unsuitable for QV.

5.2 Payment systems

Traditional electronic payments Online election/survey systems which have
been proposed in the literature do not integrate payments.27 The main chal-
lenge of integrating QV payments into an election/survey system is in satisfying

26Section 4.3 described how to compute the tallies of votes and payments, in the context of
STAR-Vote. These tallying methods are equally applicable in the context of Helios.

27Certain “paid survey” companies implement a system where survey takers are paid to
take surveys. This is a completely different setting from the QV setting, since such companies
do not generally provide anonymity for survey takers, and payments are made unilaterally
from the survey organizer to the survey takers, and the payment amount is independent of
the survey takers’ choices in the survey.
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the secrecy requirement that the amount of money that any individual voter
pays into the election must be kept secret. Traditional financial institutions
have to keep records of each transaction made by electronic methods (such as
debit card payments and bank transfers), and the same is true of other online
payment services such as Paypal and Venmo. This means that your bank (or
Paypal/Venmo/etc.) knows how much you paid into the election, but also that
that information is potentially available to the government (e.g. by subpoena).
Hence, we do not consider payment via traditional financial institutions or online
payment services to be a satisfactory solution.

Cryptocurrency The primary alternative means of electronically transfer-
ring money is cryptocurrency. Currently, Bitcoin [41] is by far the most widely
used cryptocurrency in existence, with a market cap over $6 billion US dollars.
Bitcoin is based on maintaining a block chain or public ledger recording ev-
ery Bitcoin transaction that ever happened. An identity in Bitcoin is associated
with a public key, and so the ledger contains transactions which are (essentially)
of the form:

Public key K transferred N bitcoins to public key K ′.

There are two main problems with using Bitcoin for QV payments. The
first is that ownership of a public key is not anonymous: while there is no in-
formation built into the Bitcoin system which links public keys to real-world
identities, recent research [39, 47] has shown that in practice, it is quite possible
to deanonymize most Bitcoin public keys (and it is relatively easy for a gov-
ernment with subpoena power). The second problem is that even if individual
ownership of public keys were perfectly anonymous, the public-ledger-based sys-
tem has an inherent problem in that all payment amounts are publicly visible.
Recall, from Section 3.1, the secrecy requirement that even the set of all vote
magnitudes must be kept secret. The Bitcoin system seems simply incompatible
with this sort of secrecy requirement.

Other cryptocurrency proposals have been made, which provide stronger
anonymity/privacy guarantees than Bitcoin: notably, Zerocash [14] is an exten-
sion to Bitcoin28 which allows for anonymous payments in which the payer and
payee identities and the payment amounts are all provably hidden. At the time
of writing, there is currently no fully-fledged deployment of Zerocash, but the
currency is under active development by a recent startup (founded earlier this
year, 2016) and available as an alpha release [4].

5.3 Integrating Helios and Zerocash for QV

In order to integrate Zerocash payments with Helios to build a secure electronic
QV implementation, the election administrator needs a way of receiving pay-
ments. We assume that when a survey is set up, a new Zerocash identity is

28In fact, Zerocash can be implemented as an extension to any cryptocurrency with basic
structural resemblance to Bitcoin. Many such currencies exist: they are often collectively
referred to as “altcoins”. The popularity of such altcoins is dwarfed by that of Bitcoin.
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created to receive all the payments for that survey, and that sufficient informa-
tion is published so that survey-takers can direct their payments to the correct
recipient. A survey-taker must prove that he/she has made a payment of the
appropriate amount, before being allowed to submit his/her survey responses.
This can be done using zero-knowledge proofs, so that the survey-taker’s Zero-
cash identity need not be revealed to the Helios system.29

We remark that when deploying such a system, additional precautions should
be taken to ensure the anonymity of the information flowing into and out of
the Zerocash network, since Zerocash’s own anonymity guarantees only apply
to interactions which take place within the Zerocash network. For this purpose,
we suggest the use of technologies such as Tor [3] or I2P [1] which are designed
to anonymize internet traffic.

Converting regular currency to election currency Zerocash supports all
the secrecy and anonymity properties required by a secure QV implementation,
so would be suitable for conducting electronic QV surveys, if the currency were
very widely used. If the currency is insufficiently widely used, then many voters
would be buying Zerocash with regular money solely for the purpose of the
election. Then, simply observing the amounts of Zerocash that voters buy
would be a relatively good indication of how many votes they cast.

Currently, even Bitcoin is not nearly widely enough used to mitigate such
concerns. Thus, although Zerocash seems to be the electronic payment method
which is most suitable for an electronic QV implementation, we stress that in
practice, payment secrecy is likely to be compromised if the election currency is
not in ubiquitous use across the voter population.

Not using currency at all? An alternative approach which is being tested
experimentally by start-up Collective Decision Engines is not to use money at
all, but to use an “election currency” which is only useful for survey responses.
Each survey-taker is allocated the same number of election currency units to
spend on the survey. Clearly, if there is only one choice to be made, then each
survey-taker will be incentivized to spend all his votes on the candidate he
prefers, and this will become equivalent to plurality voting.

However, Collective Decision Engines is designed for the setting of surveys
which consist of multiple (two-candidate) questions. In this case, survey-takers
will have to choose how to allocate their votes between the different questions,
and will be incentivized to spend more votes on the issues they care more about.
The result is still very different from using monetary payments, in that voters’
choices can only reflect how much they care about certain questions on the
survey relative to other questions on the survey. Collective Decision Engines
claims that their findings indicate that market surveys conducted in this way

29From the perspective of practicality: the zero-knowledge proofs required here would be
quite simple, so could be performed roughly as efficiently as the Zerocash payment itself
(which, as mentioned earlier, is fast enough to be considered for practical deployment, e.g.,
by startup Zcash).

20



can still elicit useful information from survey-takers beyond that which would
be elicited by traditional surveys.

5.4 Drawbacks of electronic implementation

We pause to note that existing security technologies are widely viewed as being
inadequate at present to protect online elections from serious attack. See [28]
for a discussion of the security issues arising in online elections: denial-of-service
attacks (possibly for selected jurisdictions only), client-side malware, server-side
malware, vote-selling, voter-coercion, and difficulty producing a evidence trail
as to the correct outcome. For these reasons (and others), we do not support
online voting schemes for actual governmental elections.

6 Designing robust refunds

While the concrete refund scheme suggested by Lalley and Weyl in [37] is to
divide election revenue equally among all voters (Refund Rule 1, below), they
remark that this particular refund rule is not essential ([37, footnote 6]):

“This particular refund rule is for concreteness and budget balance
only, and plays no role in our results. A wide range of refund rules
would work equally well.”

In fact, any efficient and balanced refund rule (see Definition 6.2) suffices for
the proofs in [37] to go through [56]. We remark that the conditions that must
be satisfied by a QV refund rule have not been formally specified in prior work.

Definition 6.1 (Basic refund rule). A basic refund rule is specified by a matrix
R = {Ri,j}i,j∈[n] ∈ [0, 1]n×n where Ri,j ∈ [0, 1] is the fraction of funds paid in
by voter i which is received by voter j.

Refund Rule 1 (Equal division). The equal-division refund rule is a basic
refund rule Req = {Ri,j}i,j∈[n] where for all i, j ∈ [n], Ri,j = 1/n.

Definition 6.2 (Efficiency and balance). A basic refund rule R is efficient and
balanced if it satisfies the following two properties:

• Budget balance: ∀i ∈ [n],
∑
j∈[n]Ri,j = 1.

• Efficiency: There is a constant R∗ ∈ [0, 1) such that ∀i ∈ [n], Ri,i = R∗.

Definition 6.1 gives a very simple definition of refund rule: in particular, the
rule is linear and deterministic. Both of these conditions can be relaxed. In the
scope of this work, we consider only linear refund rules.
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6.1 What determines the voter indices?

An alternative efficient and balanced basic refund rule is given below.

Refund Rule 2 (Cycle). Voter 2 gets voter 1’s payment, voter 3 gets voter
2’s payment, and so on. That is, the cycle refund rule is a basic refund rule
Rcyc = {Ri,j}i,j∈[n] where for all i ∈ [n],

Ri,j =

{
1 if j ≡ i+ 1 (mod n)

0 otherwise
.

This immediately raises the question: what determines the voter indices?
For example, with the cycle refund rule: if voters were assigned indices in the
order that they check in at the polling place, then rational voters would try to
position themselves behind wealthy-looking people in line, in the hope of getting
a larger refund. Such behavior seems undesirable.

The problem above stems from the idea that voters may have (some degree
of) control over their indices. Lalley and Weyl’s original analysis [37] in a model
where voters cannot collude, does not (need to) address this issue, as the specific
refund rule they use (i.e. equal division) is robust against such behavior because
all voters’ refund amounts are equal, independently of their indices.

6.1.1 Security against voter-index attacks

We propose a security definition for refund rules (Definition 6.3, below) which
models the possibility that voters may be able to influence their indices (and
the indices of others). Cryptographic security definitions generally characterize
security against a “worst-case” adversary: this is considered good practice in
order to maximally protect even against unanticipated types of attacks. Accord-
ingly, Definition 6.3 assumes a powerful adversarial voter who can arbitrarily
control the indices of all voters, and has detailed auxiliary information about
their votes. We stress that we do not necessarily consider such a powerful ad-
versarial voter to be realistic; we are just positing a worst-case scenario in order
to strengthen the security definition.

Definition 6.3. Let R be an efficient and balanced basic refund rule. Suppose
that the amounts paid in by voters 1, . . . , n are equal to p1, . . . , pn respectively.
The refund rule R is said to be secure against voter-index attacks if a voter who
knows p1, . . . , pn cannot get a higher reward even given the power to arbitrarily
permute the indices of the voters.

More formally: R is secure against voter-index attacks if for all permuta-
tions σ ∈ Sym([n]) (where Sym([n]) denotes the symmetric group of [n]), for all
j ∈ [n], it holds that ∑

i∈[n]

Rσ(i),σ(j) · pσ(i) =
∑
i∈[n]

Ri,j · pi
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It is straightforward to see that the equal-division refund rule already satis-
fies Definition 6.3. In fact, the equal-division rule is the only basic refund rule
which is secure against voter-index attacks. However, we will now see that if we
allow refund rules to be randomized, then there is a larger class of refund rules
which are secure against voter-index attacks.

6.2 Randomized refund rules

In this subsection, we present a generalized definition of refund rules that al-
lows for randomization, and a corresponding efficiency/balance condition and
security definition.

Definition 6.4 (Randomized refund rule). A randomized refund rule is speci-
fied by a distribution R ∈ ∆([0, 1]n×n) over basic refund rules, where ∆([0, 1]n×n)
denotes the set of all distributions over [0, 1]n×n. The randomized refund process
is: sample a basic refund rule R from R, then issue refunds according to R.

Definition 6.5 (Efficiency and balance). A randomized refund rule R is effi-
cient and balanced if it satisfies the following two properties:

• Budget balance: ∀R ∈ Supp(R), ∀i ∈ [n],
∑
j∈[n]Ri,j = 1.

• Expected efficiency:30 There is a constant R∗ ∈ [0, 1) such that ∀i ∈ [n],
E[Ri,i] = R∗. The expectation is taken over the choice of R from R.

Note that when implementing a randomized refund rule, it is important to
ensure that the sampling randomness is chosen honestly. One way to do this
is to produce the randomness under public scrutiny, e.g. by rolling dice as the
public watches (either in person or by television).

Moreover, the randomness must be sampled after all votes have been cast, as
captured in the security definition that follows. This is a reasonable assumption
even for a worst-case adversary, because a list of voter indices could be published
(and signed by the election trustees for authenticity), before the refund amounts
are computed.

Definition 6.6. Let R be an efficient and balanced randomized refund rule.
Suppose that the amounts paid in by voters 1, . . . , n are equal to p1, . . . , pn re-
spectively. The refund rule R is said to be secure against voter-index attacks if
a voter who knows p1, . . . , pn cannot get a higher expected reward even given the
power to arbitrarily permute the indices of the voters before the randomization
step of the refund rule.

More formally: R is secure against voter-index attacks if for all permuta-
tions σ ∈ Sym([n]), for all j ∈ [n], it holds that

E

∑
i∈[n]

Rσ(i),σ(j) · pσ(i)

 = E

∑
i∈[n]

Ri,j · pi

 ,

30For randomized refund rules, we believe requiring expected efficiency is sufficient since the
QV analysis assumes voters to be risk-neutral, as also confirmed in private communication
with Glen Weyl [56].
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where the expectation is taken over the randomness of the refund rule.

We highlight a couple of simple randomized refund rules which are efficient
and balanced.

Refund Rule 3 (Lottery). One person is chosen at random to receive the
entire election revenue. That is, the lottery refund rule is a randomized refund
rule R which is uniform over the following set of basic refund rules:{

R ∈ [0, 1]n×n : ∃j∗ ∈ [n] such that ∀i ∈ [n], Ri,j∗ = 1
}
.

Refund Rule 4 (Random swaps). Voters are randomly paired up, and each
voter’s payment is received (in full) by his/her “partner”. That is, the random-
swaps refund rule is a randomized refund rule R which is uniform over the
following set of basic refund rules:31{

R ∈ [0, 1]n×n : ∃σ ∈ Sym2([n]) s.t. ∀i ∈ [n], Ri,j =

{
1 if σ(i) = j

0 otherwise

}
,

where Sym2([n]) ⊂ Sym([n]) denotes the set of permutations of [n] that decom-
pose into a product of disjoint transpositions (i.e., 2-cycles). In other words,
Sym2([n]) is the set of permutations which consist solely of swaps between dis-
joint pairs of elements.

In fact, any basic refund rule R which is efficient and balanced (but not
necessarily secure against voter-index attacks) can be transformed into a ran-
domized refund rule R which is efficient and balanced and also secure against
voter-index attacks, by the following simple transformation: let R be the uni-
form distribution over{

R′ ∈ [0, 1]n×n : ∃σ ∈ Sym([n]) such that ∀i, j ∈ [n], R′i,j = Rσ(i),σ(j)
}
.

Finally, we remark that security against voter-index attacks is not the only
relevant consideration in designing a robust refund rule. For example, it is also
important that the refund rule preserves secrecy. Note that in the case of the
lottery rule, this does not pose a concern; but in the case of the random swaps,
we would like the voters not to know the identity of their “swap-partner” since
otherwise they would learn the amount of their partner’s vote.

Why consider randomized refund rules? One advantage of randomized
refund rules is that they may be much simpler to administer: for example,
the lottery refund rule only requires reimbursement of a single voter, rather
than managing the distribution of checks to every voter who turned out to
vote. Methods for securely running lotteries between a distributed network of
participants are known based on a cryptographic tool called secure multi-party

31As written, the rule only works when the number of voters is even. We wrote it thus for
simplicity, and note that it can straightforwardly be extended to cover the odd case too.
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computation [31, 13, 24], and recent work also shows specific practical methods
for running lotteries over the Bitcoin network [8].

Another potential advantage is that they may be able to be realized with
weaker trust assumptions, and therefore be administered in more adversarial
environments. For example, the random-swaps rule may be useful in a setting
where the cash flow cannot be reliably monitored on television from beginning
to end. This might mean that voters do not trust the election authority to
handle their cash correctly, but the election may still be able to go ahead since
the exchange of cash can occur solely between pairs of voters, and never go
through the central authority at all.32

6.3 Collusion and refund rules

Another potentially problematic issue when designing robust refund rules is
collusion between voters. We exemplify this by way of another simple refund
rule, given below.

Refund Rule 5 (Neighbor). Voters 1 and 2 swap payments, voters 3 and 4
swap payments, and so on.33 That is, the neighbor refund rule is a basic refund
rule Rnbr = {Ri,j}i,j∈[n] where for all i ∈ [n],

Ri,j =


1 if j ≡ i+ 1 (mod N) and i is odd

1 if j ≡ i− 1 (mod N) and i is even

0 otherwise

.

With the neighbor refund rule, two colluding friends with the same political
inclination could stand next to each other in line and agree on an arbitrarily
large number of votes to cast, safe in the knowledge that their net monetary
loss will be 0 since they will just swap payments in the end.

This type of attack is in a materially different category from the attacks on
refund rules which were described earlier in this section, because the adversarial
voter aims to manipulate the election outcome to his/her advantage, rather than
aiming to manipulate his/her refund amount as in the previously described
attacks. Nonetheless, the specific attack we described against the neighbor
refund rule can be prevented by the randomization techniques from Section 6.2.

Collusion between voters is an issue that is not addressed by Lalley and
Weyl’s original analysis [37] and is an inherent issue completely independent of
voter-index manipulation. For example, because QV requires quadratic pricing

32Designing such a voting scheme in detail is tricky, and we do not currently have a detailed
design. Some challenges include: (a) even if exchange of cash occurs solely between pairs of
voters, it must somehow be ensured that each voter cannot cast more votes than he/she paid
for, and (b) the pairings must be chosen randomly, so voters need a way of reliably transferring
cash to a specific random stranger. Still, these issues seem like they could be resolved, at least
for small-scale local elections where all voters are geographically close and the election can
occur within a short time-frame.

33Technically, the refund rule as stated only works when n is even. The rule can straight-
forwardly be modified to support odd n too.
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of votes per individual, two colluding individuals can buy v votes for a lower
price than one individual alone.

Issues of collusion to manipulate the election outcome are beyond this scope
of this paper. For a more detailed discussion of this topic, we refer to a recent
paper by Weyl [54] which partially addresses the issue of collusion in QV.

7 Conclusion

A secure implementation of quadratic voting requires the implementation of two
of the most challenging functionalities even in the stand-alone setting: voting,
and payments.

This paper provides an overview of the challenges that must be addressed in
a secure implementation of quadratic voting, and suggests how certain physical
and cryptographic technologies might help to secure such an implementation.

Our presentation considers as separate cases in-person pollsite voting and
remote voting. Our first pollsite voting proposal uses a quantity of wax sold
to the voter to represent a quantity of votes; wax has the nice property that
chunks of it can be melted together to provide anonymity about the chunk
sizes. Our second pollsite voting scheme uses cryptographic techniques, includ-
ing (additive, single-multiplication) homomorphic encryption, to achieve similar
properties. Both pollsite voting proposals use cash for payments. Our remote
voting proposal uses homomorphic encryption in conjunction with payments
made through a cryptocurrency with strong anonymity properties.

It must be emphasized, however, that remote voting over the internet intro-
duces a myriad of security issues, such as denial-of-service attacks, and there is
as yet no way to fully secure internet voting, for any voting system. See the
Overseas Vote Foundation report [28] for a more detailed study of the problems
intrinsic to trying to vote over the Internet.

In addition, we are unable to provide any recourse against the problem of
voter collusion (pooling their resources to buy votes more cheaply); this seems
like an intrinsic issue for QV.

But in low-stakes scenarios, where coercion and vote-buying seem unlikely,
the approaches we suggest may be applicable, just as, for example, the Helios
system [6] seems usable when such attacks seem highly improbable.

Finally, we suggest some extensions to the basic quadratic voting framework.
In particular, we study and characterize robust refund rules, and introduce
some novel randomized refund rules (like the “lottery” method) that satisfy
our refined conditions for acceptable QV refund rules, and which may well be
worth further investigation due to their simpler administrative requirements and
entertainment value for voters.
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